County of San Diego PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

Fallbrook Oaks PDS2016-TM-5449R

3918 Reche Road Fallbrook, CA 92028

ASSESSOR'S PARCEL NUMBER(S): 107-070-03

ENGINEER OF WORK:

William Lundstrom R.C.E. 61630

PREPARED FOR:

Crossroads Investors I, LLC 10525 Vista Sorrento Parkway, Suite 310 San Diego, CA 92121

PDP SWQMP PREPARED BY:

Lundstrom Engineering & Surveying, Inc. 5333 Mission Center Road, #115 San Diego, CA 92108 619 814-1220

DATE OF SWQMP: February 12, 2018

PLANS PREPARED BY: Lundstrom Engineering & Surveying, Inc. SWQMP APPROVED BY:

This page was left intentionally blank.

Template Date: August 28, 2017 Preparation Date: 02-12-2018 LUEG:SW PDP SWQMP

-		_	I	- 4			_		1.		_	4
	Га	n	\Box	വ		(n	n	Тζ	וב	M.	rc
		U		O	•		u		Ľ			ட

Table of Conte	nts	ii
Attachments		i\
Acronyms		iv
PDP SWQMP	Preparer's Certification Page	v
Submittal Reco	ord	vi
Project Vicinity	Мар	vii
Step 1: Pro	ject type determination (Standard or Priority Development Project)	1
Step 1.1:	Storm Water Quality Management Plan requirements	5
Step 1.2:	Exemption to PDP definitions	5
Step 2: Cor	nstruction Storm Water BMP Checklist	7
Step 3: Cou	unty of San Diego PDP SWQMP Site Information Checklist	10
Step 3.1:	Description of Existing Site Condition	10
Step 3.2:	Description of Existing Site Drainage Patterns	11
Step 3.3:	Description of Proposed Site Development	13
Step 3.4:	Description of Proposed Site Drainage Patterns	15
Step 3.5:	Potential Pollutant Source Areas	16
Step 3.6:	Identification and Narrative of Receiving Water and Pollutants of Concern .	18
Step 3.7:	Hydromodification Management Requirements	19
Step 3.7.1	: Critical Coarse Sediment Yield Areas*	21
Step 3.7.2	: Flow Control for Post-Project Runoff*	23
Step 3.8:	Other Site Requirements and Constraints	25
Step 4: Sou	urce Control BMP Checklist	26
Step 5: Site	Design BMP Checklist	30
Step 6: PD	P Structural BMPs	32
Step 6.1:	Description of structural BMP strategy	32
Step 6.2:	Structural BMP Checklist	34
Step 6.3:	Offsite Alternative Compliance Participation Form	35

Attachments

Attachment 1: Backup for PDP Pollutant Control BMPs

Attachment 1a: Storm Water Pollutant Control Worksheet Calculations

Attachment 1b: DMA Exhibit

Attachment 1c: Individual Structural BMP DMA Mapbook Attachment 2: Backup for PDP Hydromodification Control Measures

Attachment 2a: Flow Control Facility Design

Attachment 2b: Hydromodification Management Exhibit

Attachment 2c: Management of Critical Coarse Sediment Yield Areas Attachment 2d: Geomorphic Assessment of Receiving Channels (optional)

Attachment 2e: Vector Control Plan (if applicable)

Attachment 3: Structural BMP Maintenance Plan

Attachment 3a: Structural BMP Maintenance Thresholds and Actions

Attachment 3b: Draft Maintenance Agreements / Notifications(when applicable)

Attachment 4: County of San Diego PDP Structural BMP Verification for DPW Permitted Land Development Projects

Attachment 5: Copy of Plan Sheets Showing Permanent Storm Water BMPs

Attachment 6: Copy of Project's Drainage Report

Attachment 7: Copy of Project's Geotechnical and Groundwater Investigation Report

Acronyms

ACP Alternative Compliance Project
APN Assessor's Parcel Number
BMP Best Management Practice

BMP DM Best Management Practice Design Manual HMP Hydromodification Management Plan

HSG Hydrologic Soil Group

MS4 Municipal Separate Storm Sewer System

N/A Not Applicable

NRCS Natural Resources Conservation Service

PDCI Private Development Construction Inspection Section

PDP Priority Development Project

PDS Planning and Development Services

PE Professional Engineer

RPO Resource Protection Ordinance

SC Source Control SD Site Design

SDRWQCB San Diego Regional Water Quality Control Board

SIC Standard Industrial Classification
SWQMP Storm Water Quality Management Plan
WMAA Watershed Management Area Analysis

WPO Watershed Protection Ordinance WQIP Water Quality Improvement Plan

Template Date: August 28, 2017 Preparation Date: 02-12-2018

LUEG:SW PDP SWQMP

PDP SWQMP Preparer's Certification Page

Project Name: Fallbrook Oaks

Permit Application Number: PDS2016-TM-5449R

PREPARER'S CERTIFICATION

I hereby declare that I am the Engineer in Responsible Charge of design of storm water best management practices (BMPs) for this project, and that I have exercised responsible charge over the design of the BMPs as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the PDP requirements of the County of San Diego BMP Design Manual, which is a design manual for compliance with local County of San Diego Watershed Protection Ordinance (Sections 67.801 et seq.) and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2013-0001 as amended by R9-2015-0001 and R9-2015-0100) requirements for storm water management.

I have read and understand that the County of San Diego has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the BMP Design Manual. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by County staff is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

Engineer of Work's Signature, PE Number &	Expiration Date
William Lundstrom Print Name	
Lundstrom Engineering & Surveying, Inc. Company	
<u>02-12-2018</u> Date	Foreign and Organ
	Engineer's Seal:

Template Date: August 28, 2017 Preparation Date: 02-12-2018

LUEG:SW PDP SWQMP

This page was left intentionally blank.

Template Date: August 28, 2017 Preparation Date: 02-12-2018 LUEG:SW PDP SWQMP

Submittal Record

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is re-submitted, provide the date and status of the project. In column 4 summarize the changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments behind this page.

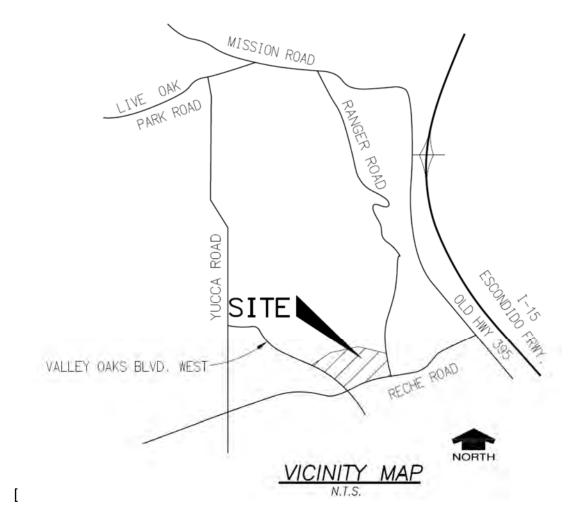
Preliminary Design / Planning / CEQA

Submittal Number	Date	Summary of Changes
1	02-12-2018	Initial Submittal
2		
3		
4		

Final Design

Submittal Number	Date	Summary of Changes
1		Initial Submittal
2		
3		
4		

Plan Changes


Submittal Number	Date	Summary of Changes
1		Initial Submittal
2		
3		
4		

Template Date: August 28, 2017 Preparation Date: 02-12-2018

LUEG:SW PDP SWQMP

Project Vicinity Map

Project Name: Fallbrook Oaks Record ID: PDS2016-TM-5449R

Step 1: Project type determination (Standard or Priority Development Project)

			• /	
Is the	projec	t part	of another Priority Development Project (PDP)?	(□ Yes ⊠ No
If so,	a PDP	SWQ	MP is required. Go to Step 2.	
The p	roject i	s (sel	ect one): New Development □ Redevelopment¹	
The to	otal pro	pose	d newly created or replaced impervious area is:	135,472 ft ²
The to	otal exi	sting	(pre-project) impervious area is:	0 ft ²
The to	otal are	a dist	turbed by the project is:	365,904 ft ²
comm must	non pla be obta	n of d ained	sturbed by the project is 1 acre (43,560 sq. ft.) or more OR the project by the project is 1 acre or more, a Waste Discharger Identificant the State Water Resources Control Board. The project is 1 acre (43,560 sq. ft.) or more OR the project is 1 acre or more, a Waste Discharger Identificant is 1 acre of the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.) or more OR the project is 1 acre of 43,560 sq. ft.	
Is the	projec	t in ar	ny of the following categories, (a) through (f)?2	
Yes	No	(a)	New development projects that create 10,000 square feet or m	
\boxtimes			³ (collectively over the entire project site). This includes comme mixed-use, and public development projects on public or privat	
Yes	No ⊠	(b)	Redevelopment projects that create and/or replace 5,000 squa impervious surface (collectively over the entire project site on a square feet or more of impervious surfaces). This includes comresidential, mixed-use, and public development projects on public development.	an existing site of 10,000 nmercial, industrial, blic or private land.
Yes	No	(c)	New and redevelopment projects that create and/or replace 5,0 impervious surface (collectively over the entire project site), and the following uses:	-
			 (i) Restaurants. This category is defined as a facility that sometimes drinks for consumption, including stationary lunch cour stands selling prepared foods and drinks for immediate Industrial Classification (SIC) code 5812). 	nters and refreshment

Redevelopment is defined as: The creation and/or replacement of impervious surface on an already developed site. Examples include the expansion of a building footprint, road widening, the addition to or replacement of a structure, and creation or addition of impervious surfaces. Replacement of impervious surfaces includes any activity that is not part of a routine maintenance activity where impervious material(s) are removed, exposing underlying soil during construction. Redevelopment does not include routine maintenance activities, such as trenching and resurfacing associated with utility work; pavement grinding; resurfacing existing roadways; new sidewalks construction; pedestrian ramps; or bike lanes on existing roads; and routine replacement of damaged pavement, such as pothole repair.

Applicants should note that any development project that will create and/or replace 10,000 square feet or more of impervious surface (collectively over the entire project site) is considered a new development.

For solar energy farm projects, the area of the solar panels does not count toward the total impervious area of the site.

2 of 42

(ii) Hillside development projects. This category includes development on any
natural slope that is twenty-five percent or greater.
(iii) Parking lots. This category is defined as a land area or facility for the temporary
parking or storage of motor vehicles used personally, for business, or for
commerce.
(iv) Streets, roads, highways, freeways, and driveways. This category is defined as any paved impervious surface used for the transportation of automobiles, trucks,
motorcycles, and other vehicles.

Project type determination (continued)

Yes	No	(d)	New or redevelopment projects that create and/or replace 2,500 square fee	t or more of
			impervious surface (collectively over the entire project site), and discharging	•
			an Environmentally Sensitive Area (ESA). "Discharging directly to" includes	
			conveyed overland a distance of 200 feet or less from the project to the ES.	
			conveyed in a pipe or open channel any distance as an isolated flow from the	ne project to
			the ESA (i.e. not commingled with flows from adjacent lands).	
			Note: ESAs are areas that include but are not limited to all Clean Water 303(d) impaired water bodies; areas designated as Areas of Special E Significance by the State Water Board and San Diego Water Board; S Quality Protected Areas; water bodies designated with the RARE benefithe State Water Board and San Diego Water Board; and any other eq environmentally sensitive areas which have been identified by the Cop See BMP Design Manual Section 1.4.2 for additional guidance.	Biological State Water eficial use by uivalent
Yes	No	(e)	New development projects, or redevelopment projects that create and/or re	place 5.000
	. 10	(0)	square feet or more of impervious surface, that support one or more of the	
	\boxtimes		uses:	J
			(i) Automotive repair shops. This category is defined as a facility that i in any one of the following SIC codes: 5013, 5014, 5541, 7532-753	•
			7539.	4, 01 7330-
			(ii) Retail gasoline outlets (RGOs). This category includes RGOs that r	neet the
			following criteria: (a) 5,000 square feet or more or (b) a projected A	verage Daily
			Traffic (ADT) of 100 or more vehicles per day.	
Yes	No	(f)	New or redevelopment projects that result in the disturbance of one or more	e acres of land
\boxtimes			and are expected to generate pollutants post construction.	
			Note: See BMP Design Manual Section 1.4.2 for additional guidance.	
Does the project meet the definition of one or more of the Priority Development Project categories (a) through (f) listed above?				
throug	gn (i) iis	sted a	bove?	
□ No – the project is <u>not</u> a Priority Development Project (Standard Project).				
⊠ Ye	es – the	e proje	ect is a Priority Development Project (PDP).	
Further guidance may be found in Chapter 1 and Table 1-2 of the BMP Design Manual.				
The following is for redevelopment PDPs only:				
The area of existing (pre-project) impervious area at the project site is: ft² (A)				
The total proposed newly created or replaced impervious area is ft² (B)				
Perce	ent impe	erviou	s surface created or replaced (B/A)*100:	%
The percent impervious surface created or replaced is (select one based on the above calculation):				

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP** Preparation Date: [INSERT DATE OF SWQMP]

4 of 42

☐ less than or equal to fifty percent (50%) – only newly created or replaced impervious areas are	е
considered a PDP and subject to stormwater requirements	
OR	
☐ greater than fifty percent (50%) — the entire project site is considered a PDP and subject to stormwater requirements	

Step 1.1: Storm Water Quality Management Plan requirements

Step	Answer	Progression
Is the project a Standard Project, Priority Development Project (PDP), or exception to PDP definitions?	☐ Standard Project	Standard Project requirements apply, including Standard Project SWQMP. Complete Standard Project SWQMP.
To answer this item, complete Step 1 Project Type Determination Checklist	⊠ PDP	Standard and PDP requirements apply, including PDP SWQMP. Complete PDP SWQMP.
on Pages 1 and 2, and see PDP exemption information below.	□ PDP with ACP	If participating in offsite alternative compliance, complete Step 6.3 and an ACP SWQMP.
For further guidance, see Section 1.4 of the BMP Design Manual <i>in its</i> entirety.	□ PDP Exemption	Go to Step 1.2 below.

Step 1.2: Exemption to PDP definitions

Is the project exempt from PDP definitions based on either of the following:	If so:
 Projects that are only new or retrofit paved sidewalks, bicycle lanes, or trails that meet the following criteria: (i) Designed and constructed to direct storm water runoff to adjacent vegetated areas, or other non-erodible permeable areas; OR (ii) Designed and constructed to be hydraulically disconnected from paved streets or roads [i.e., runoff from the new improvement does not drain directly onto paved streets or roads]; OR (iii) Designed and constructed with permeable pavements or surfaces in accordance with County of San Diego Guidance on Green Infrastructure; 	Standard Project requirements apply, AND any additional requirements specific to the type of project. County concurrence with the exemption is required. Provide discussion and list any additional requirements below in this form. Complete Standard Project SWQMP
 Projects that are only retrofitting or redeveloping existing paved alleys, streets or roads that are designed and constructed in accordance with the County of San Diego Guidance on Green Infrastructure. 	Complete Green Streets PDP Exempt SWQMP.

6 of 42

Discussion / justification, and additional requirements for exceptions to PDP definitions, if applicable:				

Step 2: Construction Storm Water BMP Checklist

Minimum Required Standard Construction Storm Water BMPs

If you answer "Yes" to any of the questions below, your project is subject to Table 1 on the following page (Minimum Required Standard Construction Stormwater BMPs). As noted in Table 1, please select at least the minimum number of required BMPs, or as many as are feasible for your project. If no BMP is selected, an explanation must be given in the box provided. The following questions are intended to aid in determining construction BMP requirements for your project.

Note: All selected BMPs below must be included on the BMP plan incorporated into the construction plan sets.

construction plan sets.		
Will there be soil disturbing activities that will result in exposed soil areas?	⊠Yes	□No
(This includes minor grading and trenching.)		
Reference Table 1 Items A, B, D, and E		
Note: Soil disturbances NOT considered significant include, but are not limited to,		
change in use, mechanical/electrical/plumbing activities, signs, temporary trailers,		
interior remodeling, and minor tenant improvement.		
2. Will there be asphalt paving, including patching?	⊠Yes	□No
Reference Table 1 Items D and F		
3. Will there be slurries from mortar mixing, coring, or concrete saw cutting?	⊠Yes	□No
Reference Table 1 Items D and F		
4. Will there be solid wastes from concrete demolition and removal, wall	⊠Yes	□No
construction, or form work?		
Reference Table 1 Items D and F		
5. Will there be stockpiling (soil, compost, asphalt, concrete, solid waste) for over	⊠Yes	□No
24 hours?		
Reference Table 1 Items D and F		
6. Will there be dewatering operations?	□Yes	⊠No
Reference Table 1 Items C and D		
7. Will there be temporary on-site storage of construction materials, including	⊠Yes	□No
mortar mix, raw landscaping and soil stabilization materials, treated lumber,		
rebar, and plated metal fencing materials?		
Reference Table 1 Items E and F		
8. Will trash or solid waste product be generated from this project?	⊠Yes	□No
Reference Table 1 Item F		
9. Will construction equipment be stored on site (e.g.: fuels, oils, trucks, etc.?)	⊠Yes	□No
Reference Table 1 Item F		
10. Will Portable Sanitary Services ("Porta-potty") be used on the site?	⊠Yes	□No
Reference Table 1 Item F		

Table 1. Construction Storm Water BMP Checklist

Minimum Required Best Management Practices (BMPs) A. Select Frosion Control Metho	CALTRANS SW Handbook ⁴ Detail or County Std. Detail d for Disturbed S	BMP Selected	Reference sheet No.'s where each selected BMP is shown on the plans. If no BMP is selected, an explanation must be provided.
season)			
Vegetation Stabilization Planting ⁵ (Summer)	SS-2, SS-4		
Hydraulic Stabilization Hydroseeding ² (Summer)	SS-4		
Bonded Fiber Matrix or Stabilized Fiber Matrix ⁶ (Winter)	SS-3		
Physical Stabilization Erosion Control Blanket ³ (Winter)	SS-7		
B. Select erosion control method	d for disturbed fla	nt areas (slop	pe < 5%) (choose at least one)
County Standard Lot Perimeter Protection Detail	PDS 659 ⁷ , SC-2		
Will use erosion control measures from Item A on flat areas also	SS-3, 4, 7		
County Standard Desilting Basin (must treat all site runoff)	PDS 660 ⁸ , SC-2		
Mulch, straw, wood chips, soil application	SS-6, SS-8		

State of California Department of Transportation (Caltrans). 2003. Storm Water Quality Handbooks, Construction Site Best Management Practices (BMPs) Manual. March. Available online at: http://www.dot.ca.gov/hq/construc/stormwater/manuals.htm.

If Vegetation Stabilization (Planting or Hydroseeding) is proposed for erosion control it may be installed between May 1st and August 15th. Slope irrigation is in place and needs to be operable for slopes >3 feet. Vegetation must be watered and established prior to October 1st. The owner must implement a contingency physical BMP by August 15th if vegetation establishment does not occur by that date. If landscaping is proposed, erosion control measures must also be used while landscaping is being established. Established vegetation must have a subsurface mat of intertwined mature roots with a uniform vegetative coverage of 70 percent of the natural vegetative coverage or more on all disturbed areas.

⁶ All slopes over three feet must have established vegetative cover prior to final permit approval.

County of San Diego, Planning & Development Services. 2012. Standard Lot Perimeter Protection Design System. Building Division. PDS 659. Available online at http://www.sandiegocounty.gov/pds/docs/pds659.pdf.

County of San Diego, Planning & Development Services. 2012. County Standard Desilting Basin for Disturbed Areas of 1 Acre or Less Building Division. PDS 659. Available online at http://www.sandiegocounty.gov/pds/docs/pds660.pdf.

Table 1. Construction Storm Water BMP Checklist (continued)

1 45.5 11 55116.14	CALTRANS	J	Reference sheet No.'s where each
	SW Handbook	•	selected BMP is shown on the
Minimum Required	Detail or	BMP	plans.
Best Management Practices	County Std.	Selected	If no BMP is selected, an
(BMPs)	Detail		explanation must be provided.
	ion is concentrate	ed, velocity i	must be controlled using an energy
dissipater			
Energy Dissipater Outlet	SS-10	\boxtimes	
Protection ⁹			
D. Select sediment control meth	od for all disturbe	ed areas (cho	oose at least one)
Silt Fence	SC-1	\boxtimes	
Fiber Rolls (Straw Wattles)	SC-5	\boxtimes	
Gravel & Sand Bags	SC-6 & 8	\boxtimes	
Dewatering Filtration	NS-2		
Storm Drain Inlet Protection	SC-10	\boxtimes	
Engineered Desilting Basin	SC-2		
(sized for 10-year flow)			
E. Select method for preventing	offsite tracking o	f sediment (choose at least one)
Stabilized Construction Entrance	TC-1	\boxtimes	
Construction Road Stabilization	TC-2		
Entrance/Exit Tire Wash	TC-3		
Entrance/Exit Inspection &	TC-1		
Cleaning Facility			
Street Sweeping and Vacuuming	SC-7	\boxtimes	
F. Select the general site manag	ement BMPs		
F.1 Materials Management			
Material Delivery 0.00	10/84-4		
Material Delivery & Storage	WM-1		
Spill Prevention and Control	WM-4	\boxtimes	
F.2 Waste Management ¹⁰			
Waste Management	WM-8	\boxtimes	
Concrete Waste Management			
Solid Waste Management	WM-5	\boxtimes	
Sanitary Waste Management	WM-9	\boxtimes	
Hazardous Waste Management	WM-6	\boxtimes	

Note: The Construction General Permit (Order No. 2009-0009-DWQ) also requires all projects not subject to the BMP Design Manual to comply with runoff reduction requirements through the implementation of post-construction BMPs as described in Section XIII of the order.

⁹ Regional Standard Drawing D-40 – Rip Rap Energy Dissipater is also acceptable for velocity reduction.

Not all projects will have every waste identified. The applicant is responsible for identifying wastes that will be onsite and applying the appropriate BMP. For example, if concrete will be used, BMP WM-8 must be selected.

Step 3: County of San Diego PDP SWQMP Site Information Checklist

Step 3.1: Description of Existing Site Condition

Project Watershed (Complete Hydrologic Unit, Area, and Subarea Name with Numeric Identifier)	San Luis Rey, Lower San Luis, Bonsall 903.12		
Current Status of the Site (select all that apply	y):		
 □ Existing development □ Previously graded but not built out □ Demolition completed without new const □ Agricultural or other non-impervious use □ Vacant, undeveloped/natural 	ruction		
Description / Additional Information:			
·			
Existing Land Cover Includes (select all that a	apply and provide each area on site):		
 ✓ Vegetative Cover 27.0 Acres (Square Feet) □ Non-Vegetated Pervious Areas Acres (Square Feet) □ Impervious Areas Acres (Square Feet) 			
Description / Additional Information:			
Underlying Soil belongs to Hydrologic Soil Gr	oup (select all that apply):		
□ NRCS Type A			
☐ NRCS Type B			
☑ NRCS Type C			
□ NRCS Type D			
Approximate Depth to Groundwater (GW) (or	N/A if no infiltration is used):		
☐ GW Depth < 5 feet			
☐ 5 feet < GW Depth < 10 feet			
☐ 10 feet < GW Depth < 20 feet			
⊠ GW Depth > 20 feet			

11 of 42

Existing Natural Hydrologic Features (select all that apply):
⊠ Watercourses
□ Seeps
☐ Springs
□ Wetlands
□ None
□ Other
Description / Additional Information:
An existing watercourse flows from northwest to southeast along the northerly portion of the project site. This 5.5 acre portion of the site is environmentally sensitive.

Step 3.2: Description of Existing Site Drainage Patterns

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

- (1) Whether existing drainage conveyance is natural or urban;
- (2) Is runoff from offsite conveyed through the site? if yes, quantify all offsite drainage areas, design flows, and locations where offsite flows enter the project site, and summarize how such flows are conveyed through the site;
- (3) Provide details regarding existing project site drainage conveyance network, including any existing storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels; and
- (4) Identify all discharge locations from the existing project site along with a summary of conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Describe existing site drainage patterns:

12 of 42

The existing drainage conveyance system is natural overland flow.

The existing site is vegetated with annual grass, ribbons of oak trees along the watercourse, and orchard areas.

The topography gently slopes in westerly, easterly, and southerly directions, and the natural site runoff discharges into and though natural drainage courses which runs towards the south of the project site. The majority of the runoff from the existing conditions comes from the upstream tributary area to the north. This area consist of naturally vegetated land, and several small orchards, and single family dwellings.

The project area currently discharges into and through a natural drainage course which flows south towards Reche Road to existing storm drain culverts.

Step 3.3: Description of Proposed Site Development

Project Description / Proposed Land Use and/or Activities: The proposed single family development will consists of 17 single-family homes within the 27.0 acre development. Additional activities proposed include construction of a street, bioretention basins, and storm drain List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features): Proposed impervious areas will comprise of 17 single family homes with concrete paved driveways, asphalt paved private roads. List/describe proposed pervious features of the project (e.g., landscape areas): Proposed landscape areas will comprise of private yards and street parkways. Landscape areas will have drought tolerant plants Does the project include grading and changes to site topography? ⊠Yes □No Description / Additional Information: The post-project condition conforms to the existing topography and drainage patterns

Insert acreage or square feet for the different land cover types in the table below:

Change in Land Cover Type Summary				
Land Cover Type Existing Proposed (acres or ft²) Perconduction (acres or ft²) Char				
Vegetation 27.0 23.9 +12				

Pervious (non-vegetated)	0	0	0
Impervious	0	3.1	300

Step 3.4: Description of Proposed Site Drainage Patterns

Does the project include changes to site drainage (e.g., installation of new storm water
conveyance systems)?
⊠Yes
□No
If yes, provide details regarding the proposed project site drainage conveyance network,
including storm drains, concrete channels, swales, detention facilities, storm water treatment
facilities, natural or constructed channels, and the method for conveying offsite flows through or
around the proposed project site. Identify all discharge locations from the proposed project site
along with a summary of the conveyance system size and capacity for each of the discharge
locations. Provide a summary of pre- and post-project drainage areas and design flows to each
of the runoff discharge locations. Reference the drainage study for detailed calculations.
Describe proposed site drainage patterns:
Runoff generated on-site will be collected any conveyed to privately maintained bioretention
basins with hydromodification storage and flow control components.

Step 3.5: Potential Pollutant Source Areas

Identify whether any of the following features, activities, and/or pollutant source areas will be present (select all that apply). Select "Other" if the project is a phased development and provide a description:
☐ Interior floor drains and elevator shaft sump pumps
☐ Interior parking garages
$\hfill\square$ Pools, spas, ponds, decorative fountains, and other water features
☐ Food service
☐ Refuse areas
☐ Industrial processes
☐ Outdoor storage of equipment or materials
☐ Vehicle and Equipment Cleaning
☐ Vehicle/Equipment Repair and Maintenance
☐ Fuel Dispensing Areas
☐ Loading Docks
☐ Fire Sprinkler Test Water
☐ Miscellaneous Drain or Wash Water
☐ Other (provide description)
Description / Additional Information:

Step 3.6: Identification and Narrative of Receiving Water and Pollutants of Concern

Describe flow path of storm water from the project site discharge location(s), through urban storm conveyance systems as applicable, to receiving creeks, rivers, and lagoons as applicable, and ultimate discharge to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable):

Runoff from the site is conveyed downstream by an existing drainage course for approximately 3.5 miles to the San Luis Rey River, and then approximately 17 miles to the Pacific Ocean.

List any 303(d) impaired water bodies¹¹ within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

303(d) Impaired Water Body	Pollutant(s)/Stressor(s)	TMDLs / WQIP Highest Priority Pollutant
San Luis Rey River (west of I-15)	Chloride, Enterococcus, Fecal Coliform, Phosphorus, Total Dissolved Solids, Total Nitrogen as N, Toxicity, Total Nitrogen as N	Salinity, Pathogens, Nutrients Toxicity, Pesticides

Identification of Project Site Pollutants*

*Identification of project site pollutants below is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs. Note the project must also participate in an alternative compliance program (unless prior lawful approval to meet earlier PDP requirements is demonstrated).

Identify pollutants expected from the project site based on all proposed use(s) of the site (see BMP Design Manual Appendix B.6):

Pollutant	Not Applicable to the Project Site	Anticipated from the Project Site	Also a Receiving Water Pollutant of Concern
Sediment		\boxtimes	

The current list of Section 303(d) impaired water bodies can be found at http://www.waterboards.ca.gov/water_issues/programs/water_quality_assessment/#impaired

19 of 42

Nutrients		\boxtimes	\boxtimes			
Heavy Metals						
Organic Compounds		\boxtimes	\boxtimes			
Trash & Debris						
Oxygen Demanding Substances						
Oil & Grease		\boxtimes				
Bacteria & Viruses						
Pesticides						
Step 3.7: Hydrom	odification Manage	ment Requirements				
Do hydromodification management requirements apply (see Section 1.6 of the BMP Design Manual)? ⊠Yes, hydromodification management requirements for flow control and preservation of critical coarse sediment yield areas are applicable. □No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean. □No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete-lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean. □No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA¹² for the watershed in which the project resides. Description / Additional Information (to be provided if a 'No' answer has been selected above):						

The Watershed Management Area Analysis (WMAA) is an optional element for inclusion in the Water Quality Improvement Plans (WQIPs) described in the 2013 MS4 Permit [Provision B.3.b.(4)]. It is available online at the

Project Clean Water website:

21 of 42

Step 3.7.1: Critical Coarse Sediment Yield Areas*

*This Section only required if hydromodification management requirements apply

Template Date: August 28, 2017 Preparation Date: [INSERT DATE OF SWQMP] LUEG:SW **PDP SWQMP**

Demonstrate No Net Impact If the project elects to satisfy CCSYA criteria through demonstration of no net impact to the receiving water. Applicants must identify the methods utilized from the list below and provide supporting documentation in Attachment 2c of the SWQMP. Check all that are applicable. ⊠ N/A, the project appropriately identifies, avoids, and bypasses CCSYAs. □ Project has performed additional analysis to demonstrate that impacts to CCSYAs satisfy the no net impact standard of Ep/Sp≤1.1. □ Project has provided alternate mapping of CCSYAs. □ Project has implemented additional onsite hydromodification flow control measures. □ Project has implemented an offsite stream rehabilitation project to offset impacts. □ Project has implemented other applicant-proposed mitigation measures.

Step 3.7.2: Flow Control for Post-Project Runoff*

*This Section only required if hydromodification management requirements apply

List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit.

24 of 42

Has a geomorphic assessment been performed for the receiving channel(s)?				
That a geometrine accessment been performed for the receiving charmon(e).				
No, the low flow threshold is 0.1Q2 (default low flow threshold)				
No, the low flow threshold is 0.192 (detault low flow threshold)				
☐ Vac. the result is the law flow threshold is 0.102				
\square Yes, the result is the low flow threshold is 0.1Q2				
\square Yes, the result is the low flow threshold is 0.3Q2				
☐ Yes, the result is the low flow threshold is 0.5Q2				
If a geometrible acceptant has been performed provide title data, and property				
If a geomorphic assessment has been performed, provide title, date, and preparer:				
Discussion / Additional Information: (optional)				
Discussion / Additional information. (optional)				

Step 3.8: Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

Step 4:

Source Control BMP Checklist Source Control BMPs All development projects must implement source control BMPs 4.2.1 through 4.2.6 where applicable and feasible. See Chapter 4.2 and Appendix E of the County BMP Design Manual for information to implement source control BMPs shown in this checklist. Answer each category below pursuant to the following: "Yes" means the project will implement the source control BMP as described in Chapter 4.2 and/or Appendix E of the County BMP Design Manual. Discussion / justification is not required. "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided. • "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials storage areas). Discussion / justification must be provided.

Source Control Requirement	Applied?		
4.2.1 Prevention of Illicit Discharges into the MS4	⊠Yes	□No	□N/A
Discussion / justification if 4.2.1 not implemented:	1	1	1
4.2.2 Storm Drain Stenciling or Signage	⊠Yes	□No	□N/A
Discussion / justification if 4.2.2 not implemented:	I		
4.0.0 Destant Outsland Materials Otens as Annua france Deinfall	Lev	T — N.	
4.2.3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	□Yes	□No	⊠N/A
Discussion / justification if 4.2.3 not implemented:			
4.2.4 Protect Materials Stored in Outdoor Work Areas from	□Yes	□No	⊠N/A
Rainfall, Run-On, Runoff, and Wind Dispersal			
Discussion / justification if 4.2.4 not implemented:	1		1

28 of 42

Source Control Requirement	Applied?		
4.2.5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind Dispersal	⊠Yes	□No	□N/A
Discussion / justification if 4.2.5 not implemented:			
4.2.6 Additional BMPs Based on Potential Sources of Runoff Pollutants (must answer for each source listed below):			
☐ A. On-site storm drain inlets	⊠Yes	□No	□N/A
☐ B. Interior floor drains and elevator shaft sump pumps	□Yes	□No	□N/A
☐ C. Interior parking garages	□Yes	□No	□N/A
☐ D. Need for future indoor & structural pest control	⊠Yes	□No	□N/A
☐ E. Landscape/outdoor pesticide use	⊠Yes	□No	□N/A
☐ F. Pools, spas, ponds, fountains, and other water features	□Yes	□No	□N/A
☐ G. Food service	□Yes	□No	□N/A
☐ H. Refuse areas	□Yes	□No	□N/A
☐ I. Industrial processes	□Yes	□No	□N/A
☐ J. Outdoor storage of equipment or materials	□Yes	□No	□N/A
☐ K. Vehicle and equipment cleaning	□Yes	□No	□N/A
☐ L. Vehicle/equipment repair and maintenance	□Yes	□No	□N/A
☐ M. Fuel dispensing areas	□Yes	□No	□N/A
☐ N. Loading docks	□Yes	□No	□N/A
☐ O. Fire sprinkler test water	□Yes	□No	□N/A
☐ P. Miscellaneous drain or wash water	□Yes	□No	□N/A
☐ Q. Plazas, sidewalks, and parking lots	⊠Yes	□No	□N/A

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP** Preparation Date: [INSERT DATE OF SWQMP]

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

29 of 42

Discussion / justification if 4.2.6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

Note: Show all source control measures described above that are included in design capture volume calculations in the plan sheets of Attachment 5.

Template Date: August 28, 2017 LUEG:SW PDP SWQMP

Step 5: Site Design BMP Checklist

Site Design BMPs

All development projects must implement site design BMPs SD-A through SD-H where applicable and feasible. See Chapter 4.3 and Appendix E of the County BMP Design Manual for information to implement site design BMPs shown in this checklist.

Answer each category below pursuant to the following:

- "Yes" means the project will implement the site design BMP as described in Chapter 4.3 and/or Appendix E of the County BMP Design Manual. Discussion / justification is not required.
- "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided.
- "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project site has no existing natural areas to conserve). Discussion / justification must be provided.

Site Design Requirement	Applied?		
4.3.1 Maintain Natural Drainage Pathways and Hydrologic Features	⊠Yes	□No	□N/A
Discussion / justification if 4.3.1 not implemented:			
4.3.2 Conserve Natural Areas, Soils, and Vegetation	⊠Yes	□No	□N/A
Discussion / justification if 4.3.2 not implemented:			
4.3.3 Minimize Impervious Area	⊠Yes	□No	□N/A
Discussion / justification if 4.3.3 not implemented:			
4.3.4 Minimize Soil Compaction	⊠Yes	□No	□N/A
Discussion / justification if 4.3.4 not implemented:			

Template Date: August 28, 2017 Preparation Date: [INSERT DATE OF SWQMP]

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

31 of 42

Site Design Requirement	Applied?		
4.3.5 Impervious Area Dispersion	⊠Yes	□No	□N/A
Discussion / justification if 4.3.5 not implemented:			
4.3.6 Runoff Collection	⊠Yes	□No	□N/A
Discussion / justification if 4.3.6 not implemented:			
4.3.7 Landscaping with Native or Drought Tolerant Species	⊠Yes	□No	□N/A
Discussion / justification if 4.3.7 not implemented:			
4.3.8 Harvesting and Using Precipitation	□Yes	□No	⊠N/A
Discussion / justification if 4.3.8 not implemented:		,	

Note: Show all site design measures described above that are included in design capture volume calculations in the plan sheets of Attachment 5.

Template Date: August 28, 2017 LUEG:SW PDP SWQMP

Step 6: PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the County at the completion of construction. This may include requiring the project owner or project owner's representative and engineer of record to certify construction of the structural BMPs (see Section 1.12 of the BMP Design Manual). PDP structural BMPs must be maintained into perpetuity, and the County must confirm the maintenance (see Section 7 of the BMP Design Manual).

Use this section to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (Step 6.2) for each structural BMP within the project (copy the BMP summary information sheet [Step 6.2] as many times as needed to provide summary information for each individual structural BMP).

Step 6.1: Description of structural BMP strategy

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate. At the end of this discussion provide a summary of all the structural BMPs within the project including the type and number.

The following structural BMP strategy is based on no harvesting per worksheet B3.-1 of County of San Diego BMP Design Manual.

Runoff generated on-site impervious areas will be collected any conveyed to privately maintained bioretention basins with hydromodification storage and flow control components. Soil report shows suitable infiltration rates throughout the site. Proposed bioretention basins will be designed for full infiltration of the DCV.

Template Date: August 28, 2017 LUEG:SW PDP SWQMP

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

33 of 42

(Page reserved for continuation	of structural BMP strategy continued on of description of general strategy for structural BMP mplementation at the site)
(Continued from previous page)	-

Step 6.2: Structural BMP Checklist

(Copy this page as needed to provide information for each individual proposed structural BMP)					
Structural BMP ID No.	·				
Construction Plan Sheet No.					
Type of structural BMP:					
☐ Retention by harvest and use (HU-1)					
☐ Retention by infiltration basin (INF-1)					
⊠ Retention by bioretention (INF-2)					
☐ Retention by permeable pavement (INF-3)					
□ Partial retention by biofiltration with partial ret□ Biofiltration (BF-1)	ention (PR-1)				
☐ Biofiltration with Nutrient Sensitive Media Des	sign (BF-2)				
☐ Proprietary Biofiltration (BF-3) meeting all req					
☐ Flow-thru treatment control with prior lawful a	• •				
(provide BMP type/description in discussion s	•				
☐ Flow-thru treatment control included as pre-tr	•				
biofiltration BMP (provide BMP type/description biofiltration BMP it serves in discussion sections.)					
☐ Flow-thru treatment control with alternative co	•				
discussion section below)	3) o a a company (1 1 1 1 1 1 1 1 1				
☐ Detention pond or vault for hydromodification	management				
☐ Other (describe in discussion section below)					
Purpose:					
☐ Pollutant control only					
☐ Hydromodification control only					
□ Combined pollutant control and hydromodifical □					
☐ Pre-treatment/forebay for another structural E	BMP				
☐ Other (describe in discussion section below)					
Who will certify construction of this BMP?					
Provide name and contact information for the					
party responsible to sign BMP verification					
forms (See Section 1.12 of the BMP Design					
Manual)					

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP**

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

35 of 42

Who will be the final owner of this BMP?	☑ HOA ☐ Property Owner ☐ County☐ Other (describe)
Who will maintain this BMP into perpetuity?	☑ HOA ☐ Property Owner ☐ County☐ Other (describe)
What Category (1-4) is the Structural BMP?	
Refer to the Category definitions in Section 7.3 of the BMP DM. Attach the appropriate maintenance agreement in Attachment 3.	Category 1
Discussion (as needed):	
(Continue on subsequent pages as necessary)	

Step 6.3: Offsite Alternative Compliance Participation Form

otop olo: Offolio Atternative compile	
PDP INFORMATION	
Record ID:	
Assessor's Parcel Number(s) [APN(s)]	
What are your PDP Pollutant Control Debits? *See Attachment 1 of the PDP SWQMP	
What are your PDP HMP Debits? (if applicable) *See Attachment 2 of the PDP SWQMP	
ACP Information	
Record ID:	
Assessor's Parcel Number(s) [APN(s)]	
Project Owner/Address	
What are your ACP Pollutant Control Credits? *See Attachment 1 of the ACP SWQMP	
What are your ACP HMP Debits? (if applicable) *See Attachment 2 of the ACP SWQMP	
Is your ACP in the same watershed as your PDP?	Will your ACP project be completed prior to the completion of the PDP?
☐ Yes	☐ Yes
□ No	□ No
Does your ACP account for all Deficits generated by the PDP?	What is the difference between your PDP debits and ACP Credits?

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP** Preparation Date: [INSERT DATE OF SWQMP]

PRIORITY DEVELOPMENT PRO	DJECT (PDP) SWQMP	36 of 42
 ☐ Yes ☐ No (PDP and/or ACP must be redesigned to account for all deficits generated by the PDP. 	*(ACP Credits -Total PDP Debits = Earned Credits)	Total

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP**

ATTACHMENT 1

BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.

Indicate which Items are Included behind this cover sheet:

Attachment		
Sequence	Contents	Checklist
Attachment 1a	Storm Water Pollutant Control Worksheet Calculations	☐ Included
	-Worksheet B.3-1 (Required)	
	-Worksheet B.1-1 (Required)	
	-Worksheet B.4-1 (if applicable)	
	-Worksheet B.4-2 (if applicable)	
	-Worksheet B.5-1 (if applicable)	
	-Worksheet B.5-2 (if applicable)	
	-Worksheet B.5-3 (if applicable)	
	-Worksheet B.6-1 (if applicable)	
	-Summary Worksheet (optional)	
Attachment 1b	Form I-8, Categorization of Infiltration Feasibility Condition (Required unless the project will use harvest and use BMPs)	 ☐ Included ☐ Not included because the entire project will use harvest and use BMPs
	Refer to Appendices C and D of the BMP Design Manual to complete Form I-8.	
Attachment 1c	DMA Exhibit (Required)	☐ Included
	See DMA Exhibit Checklist on the back of this Attachment cover sheet.	

Template Date: August 28, 2017 LUEG:SW PDP SWQMP - Attachments

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

38 of 42

Attachment 1d	Individual Structural BMP DMA	☐ Included
	Mapbook (Required)	
	-Place each map on 8.5"x11" paper.	
	-Show at a minimum the DMA,	
	Structural BMP, and any existing	
	hydrologic features within the DMA.	

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

39 of 42

Use this checklist to ensure the required information has been included on the DMA Exhibit:

The DMA Exhibit must identify:
☐ Underlying hydrologic soil group
☐ Approximate depth to groundwater
☐ Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
☐ Critical coarse sediment yield areas to be protected
☐ Existing topography and impervious areas
☐ Existing and proposed site drainage network and connections to drainage offsite
☐ Proposed demolition
☐ Proposed grading
☐ Proposed impervious features
☐ Proposed design features and surface treatments used to minimize imperviousness
$\hfill\square$ Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square
footage or acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)
\square Potential pollutant source areas and corresponding required source controls (see Chapter 4
Appendix E.1, and Step 3.5)
☐ Structural BMPs (identify location, structural BMP ID#, type of BMP, and size/detail)

Automated Worksheet B.3-1: Project-Scale BMP Feasibility Analysis (V1.3)

Category	#	Description	Value	Units
	0	Design Capture Volume for Entire Project Site	16,060	cubic-feet
	1	Proposed Development Type	Residential	unitless
Capture & Use Inputs	2	Number of Residents or Employees at Proposed Development	64	#
211 P 1010	3	Total Planted Area within Development	573,700	sq-ft
	4	Water Use Category for Proposed Planted Areas	Low	unitless
	5	Is Average Site Design Infiltration Rate ≤0.500 Inches per Hour?	Yes	yes/no
Infiltration	6	Is Average Site Design Infiltration Rate ≤0.010 Inches per Hour?	No	yes/no
Inputs	7	Is Infiltration of the Full DCV Anticipated to Produce Negative Impacts?	Yes	yes/no
	8	Is Infiltration of Any Volume Anticipated to Produce Negative Impacts?	No	yes/no
	9	36-Hour Toilet Use Per Resident or Employee	1.86	cubic-feet
	10	Subtotal: Anticipated 36 Hour Toilet Use	119	cubic-feet
	11	Anticipated 1 Acre Landscape Use Over 36 Hours	52.14	cubic-feet
	12	Subtotal: Anticipated Landscape Use Over 36 Hours	687	cubic-feet
Calculations	13	Total Anticipated Use Over 36 Hours	806	cubic-feet
	14	Total Anticipated Use / Design Capture Volume	0.05	cubic-feet
	15	Are Full Capture and Use Techniques Feasible for this Project?	No	unitless
	16	Is Full Retention Feasible for this Project?	No	yes/no
	17	Is Partial Retention Feasible for this Project?	Yes	yes/no
Result	18	Feasibility Category	4	1, 2, 3, 4, 5

Worksheet B.3-1 General Notes:

- A. Applicants may use this worksheet to determine the types of structural BMPs that are acceptable for implementation at their project site (as required in Section 5 of the BMPDM). User input should be provided for yellow shaded cells, values for all other cells will be automatically generated. Projects demonstrating feasibility or potential feasibility via this worksheet are encouraged to incorporate capture and use features in their project.
- B. Negative impacts associated with retention may include geotechnical, groundwater, water balance, or other issues identified by a geotechnical engineer and substantiated through completion of Form I-8.
- C. Feasibility Category 1: Applicant must implement capture & use, retention, and/or infiltration elements for the entire DCV.
- D. Feasibility Category 2: Applicant must implement capture & use elements for the entire DCV.
- E. Feasibility Category 3: Applicant must implement retention and/or infiltration elements for all DMAs with Design Infiltration Rates greater than 0.50 in/hr.
- F. Feasibility Category 4: Applicant must implement standard <u>unlined</u> biofiltration BMPs sized at ≥3% of the effective impervious tributary area for all DMAs with Design Infiltration Rates of 0.011 to 0.50 in/hr. Applicants may be permitted to implement lined BMPs, reduced size BMPs, and/or specialized biofiltration BMPs provided additional criteria identified in "Supplemental Retention Criteria for Non-Standard Biofiltration BMPs" are satisfied.
- G. Feasibility Category 5: Applicant must implement standard <u>lined</u> biofiltration BMPs sized at ≥3% of the effective impervious tributary area for all DMAs with Design Infiltration Rates of 0.010 in/hr or less. Applicants may also be permitted to implement reduced size and/or specialized biofiltration BMPs provided additional criteria identified in "Supplemental Retention Criteria for Non-Standard Biofiltration BMPs" are satisfied.
- H. PDPs participating in an offsite alternative compliance program are not held to the feasibility categories presented herein.

Automated Worksheet B.1-1: Calculation of Design Capture Volume (V1.3)

Category	#	Automated Work Description	i	ii	iii	iv	v	vi	vii	viii	ix	X	Units
Suregory	0	Drainage Basin ID or Name	BMP #1	BMP#2	BMP #3	BMP #4	BMP #5	BMP #6	BMP #7	BMP #8	BMP #9	BMP #10	unitless
	- U	Ü		151111 1/12	DIMI W	151111 // 1	D1.11 113	B111 110			Dill ///		
	1	Basin Drains to the Following BMP Type	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	unitless
	2	85th Percentile 24-hr Storm Depth	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	inches
	3	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	in/hr
Standard	4	Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	3,410	5,237	3,448	4,800	3,430	3,408	3,540	3,647	3,260	4,153	sq-ft
Drainage Basin	5	Semi-Pervious Surfaces Not Serving as Dispersion Area (C=0.30)							·	·			sq-ft
Inputs	6	Engineered Pervious Surfaces Not Serving as Dispersion Area (C=0.10)											sq-ft
	7	Natural Type A Soil Not Serving as Dispersion Area (C=0.10)											sq-ft
	8	Natural Type B Soil Not Serving as Dispersion Area (C=0.14)											sq-ft
	9	Natural Type C Soil Not Serving as Dispersion Area (C=0.23)											sq-ft
	10	Natural Type D Soil Not Serving as Dispersion Area (C=0.30)											sq-ft
	11	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	No	No	No	No	No	No	No	No	No	No	yes/no
	12	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)											sq-ft
	13	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
5	14	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
Dispersion	15	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
Area, Tree Well	16	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)											sq-ft
& Rain Barrel Inputs	17	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)											sq-ft
(Optional)	18	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
(Optional)	19	Number of Tree Wells Proposed per SD-A											#
	20	Average Mature Tree Canopy Diameter											ft
	21	Number of Rain Barrels Proposed per SD-E											#
	22	Average Rain Barrel Size											gal
	23	Does BMP Overflow to Stormwater Features in <u>Downstream</u> Drainage?	No	No	No	No	No	No	No	No	No	No	unitless
Treatment	24	Identify Downstream Drainage Basin Providing Treatment in Series											unitless
Train Inputs &	25	Percent of Upstream Flows Directed to Downstream Dispersion Areas											percent
Calculations	26	Upstream Impervious Surfaces Directed to Dispersion Area (Ci=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	27	Upstream Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	28	Total Tributary Area	3,410	5,237	3,448	4,800	3,430	3,408	3,540	3,647	3,260	4,153	sq-ft
Initial Runoff	29	Initial Runoff Factor for Standard Drainage Areas	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
Factor	30	Initial Runoff Factor for Dispersed & Dispersion Areas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Calculation	31	Initial Weighted Runoff Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
	32	Initial Design Capture Volume	217	334	220	306	219	217	226	232	208	265	cubic-feet
	33	Total Impervious Area Dispersed to Pervious Surface	0	0	0	0	0	0	0	0	0	0	sq-ft
Discouries	34	Total Pervious Dispersion Area	0	0	0	0	0	0	0	0	0	0	sq-ft
Dispersion Area	35	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ratio
Adjustments	36	Adjustment Factor for Dispersed & Dispersion Areas	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
Majustificitis	37	Runoff Factor After Dispersion Techniques	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
	38	Design Capture Volume After Dispersion Techniques	217	334	220	306	219	217	226	232	208	265	cubic-feet
Tree & Barrel	39	Total Tree Well Volume Reduction	0	0	0	0	0	0	0	0	0	0	cubic-feet
Adjustments	40	Total Rain Barrel Volume Reduction	0	0	0	0	0	0	0	0	0	0	cubic-feet
	41	Final Adjusted Runoff Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
Results	42	Final Effective Tributary Area	3,069	4,713	3,103	4,320	3,087	3,067	3,186	3,282	2,934	3,738	sq-ft
Results	43	Initial Design Capture Volume Retained by Site Design Elements	0	0	0	0	0	0	0	0	0	0	cubic-feet
	44	Final Design Capture Volume Tributary to BMP	217	334	220	306	219	217	226	232	208	265	cubic-feet

Worksheet B.1-1 General Notes:

A. Applicants may use this worksheet to calculate design capture volumes for up to 10 drainage areas User input must be provided for yellow shaded cells, values for all other cells will be automatically generated, errors/notifications will be highlighted in red and summarized below. Upon completion of this worksheet, proceed to the appropriate BMP Sizing worksheet(s).

Automated Worksheet B.4-1: Sizing Retention BMPs (V1.3)

Category	#	Description	i	ii	iii	iv	v	vi	vii	viii	ix	X	Units
	0	Drainage Basin ID or Name	BMP #1	BMP#2	BMP #3	BMP #4	BMP #5	BMP #6	BMP #7	BMP #8	BMP #9	BMP #10	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	in/hr
	2	Design Capture Volume Tributary to BMP	217	334	220	306	219	217	226	232	208	265	cubic-feet
BMP Inputs	3	Is Retention BMP Vegetated or Non-Vegetated?	Vegetated	unitless									
DMI Inputs	4	Provided Surface Area	200	500	200	200	200	200	200	200	200	200	sq-ft
	5	Provided Surface Ponding Depth	12	12	12	12	12	12	12	12	12	12	inches
	6	Provided Soil Media Thickness	24	24	24	24	24	24	24	24	24	24	inches
	7	Provided Gravel Storage Thickness	48	48	48	48	48	48	48	48	48	48	inches
	8	Volume Infiltrated Over 6 Hour Storm	50	125	50	50	50	50	50	50	50	50	cubic-feet
	9	Soil Media Pore Space	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	unitless
	10	Gravel Pore Space	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
Tu Cilouadia u	11	Effective Depth of Retention Storage	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	24	24	24	24	24	24	24	24	24	24	hours
	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	80	80	80	80	80	80	80	80	80	80	hours
	14	Volume Retained by BMP	670	1,675	670	670	670	670	670	670	670	670	cubic-feet
	15	Fraction of DCV Retained	3.00	3.00	3.00	2.19	3.00	3.00	2.96	2.89	3.00	2.53	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	=	ı	-	-	-	-	-	-	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	0	0	0	0	0	0	0	0	0	cubic-feet

Worksheet B.4-1 General Notes:

A. Applicants may use this worksheet to size Infiltration, Bioretention, and/or Permeable Pavement BMPs (INF-1, INF-2, INF-3) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully satisfying the pollutant control performance standards will have a deficit treated volume of zero and be highlighted in green.

Summary of Stormwater Pollutant Control Calculations (V1.3)

			<u> </u>	01 000111111		ant Control	Guiculution	10 (110)					
Category	#	Description	i	ii	iii	iv	v	vi	vii	viii	ix	χ	Units
	0	Drainage Basin ID or Name	BMP #1	BMP#2	BMP #3	BMP #4	BMP #5	BMP #6	BMP #7	BMP #8	BMP #9	BMP #10	unitless
	1	85th Percentile Storm Depth	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	inches
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	in/hr
	3	Total Tributary Area	3,410	5,237	3,448	4,800	3,430	3,408	3,540	3,647	3,260	4,153	sq-ft
	4	85th Percentile Storm Volume (Rainfall Volume)	242	371	244	340	243	241	251	258	231	294	cubic-feet
Initial DCV	5	Initial Weighted Runoff Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
Illiuai DCV	6	Initial Design Capture Volume	217	334	220	306	219	217	226	232	208	265	cubic-feet
Site Design Volume	7	Dispersion Area Reductions	0	0	0	0	0	0	0	0	0	0	cubic-feet
Reductions	8	Tree Well and Rain Barrel Reductions	0	0	0	0	0	0	0	0	0	0	cubic-feet
	9	Effective Area Tributary to BMP	3,069	4,713	3,103	4,320	3,087	3,067	3,186	3,282	2,934	3,738	square feet
BMP Volume	10	Final Design Capture Volume Tributary to BMP	217	334	220	306	219	217	226	232	208	265	cubic-feet
Reductions	11	Basin Drains to the Following BMP Type	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	unitless
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	217	334	220	306	219	217	226	232	208	265.00	cubic-feet
	13	Total Fraction of Initial DCV Retained within DMA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	fraction
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	0/0
	15	Percent of Average Annual Runoff Retention Required	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	%
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	%
	17	Discharges to Secondary Treatment in Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	0	0	0	0	0	0	0	0	0	square feet
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	1	square feet
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
Result	21	Deficit of Effectively Treated Stormwater	0	0	0	0	0	0	0	0	0	0	cubic-feet

Summary Notes

All fields in this summary worksheet are populated based on previous user inputs. If applicable, drainage basin elements that require revisions and/or supplemental information outside the scope of these worksheets are highlighted in orange and summairzed in the red text below. If all drainage basins achieve full compliance without a need for supplemental information, a green message will appear below.

-Congratulations, all specified drainage basins and BMPs are in compliance with stormwater pollutant control requirements. Include 11x17 color prints of this summary sheet and supporting worksheet calculations as part of the SWQMP submittal package.

Automated Worksheet B.1-1: Calculation of Design Capture Volume (V1.3)

Category	#	Automated Work Description	i	jį	iji	in	<i>v</i>	vi	vii	viii	ix	V	Units
Category	0	Drainage Basin ID or Name	BMP #11	BMP#12	BMP #13	BMP #14	BMP #15	BMP #16	BMP #17	BMP #18	BMP #19	BMP #20	unitless
		Diamage Dasin ID of Ivanic	DMI #11	DWI #12	DIVII #13	DIVII #14	DMI π13	DIVII #10	DIVII #17	DMI #10	DIVIT #17	DIVIT #20	unitiess
	1	Basin Drains to the Following BMP Type	Retention	unitless									
	2	85th Percentile 24-hr Storm Depth	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	inches
	3	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	in/hr
Standard	4	Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	3,635	3,635	3,552	3,555	8,965	5,255	6,375	10,034	10,651	7,910	sq-ft
Drainage Basin	5	Semi-Pervious Surfaces Not Serving as Dispersion Area (C=0.30)		,	,	,	,	,	,	,		,	sq-ft
Inputs	6	Engineered Pervious Surfaces Not Serving as Dispersion Area (C=0.10)											sq-ft
	7	Natural Type A Soil Not Serving as Dispersion Area (C=0.10)											sq-ft
	8	Natural Type B Soil Not Serving as Dispersion Area (C=0.14)											sq-ft
	9	Natural Type C Soil Not Serving as Dispersion Area (C=0.23)											sq-ft
	10	Natural Type D Soil Not Serving as Dispersion Area (C=0.30)											sq-ft
	11	Does Tributary Incorporate Dispersion, Tree Wells, and/or Rain Barrels?	No	yes/no									
	12	Impervious Surfaces Directed to Dispersion Area per SD-B (Ci=0.90)											sq-ft
	13	Semi-Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.30)											sq-ft
	14	Engineered Pervious Surfaces Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
Dispersion	15	Natural Type A Soil Serving as Dispersion Area per SD-B (Ci=0.10)											sq-ft
Area, Tree Well	16	Natural Type B Soil Serving as Dispersion Area per SD-B (Ci=0.14)											sq-ft
& Rain Barrel	17	Natural Type C Soil Serving as Dispersion Area per SD-B (Ci=0.23)					0						sq-ft
Inputs	18	Natural Type D Soil Serving as Dispersion Area per SD-B (Ci=0.30)					Ţ,						sq-ft
(Optional)	19	Number of Tree Wells Proposed per SD-A											#
	20	Average Mature Tree Canopy Diameter											ft
	21	Number of Rain Barrels Proposed per SD-E											#
	22	Average Rain Barrel Size											gal
	23	Does BMP Overflow to Stormwater Features in <u>Downstream</u> Drainage?	No	unitless									
Treatment	24	Identify Downstream Drainage Basin Providing Treatment in Series											unitless
Train Inputs &		Percent of Upstream Flows Directed to Downstream Dispersion Areas											percent
Calculations	26	Upstream Impervious Surfaces Directed to Dispersion Area (Ci=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	27	Upstream Impervious Surfaces Not Directed to Dispersion Area (C=0.90)	0	0	0	0	0	0	0	0	0	0	cubic-feet
	28	Total Tributary Area	3,635	3,635	3,552	3,555	8,965	5,255	6,375	10,034	10,651	7,910	sq-ft
Initial Runoff		Initial Runoff Factor for Standard Drainage Areas	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
Factor	30	Initial Runoff Factor for Dispersed & Dispersion Areas	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	unitless
Calculation	31	Initial Weighted Runoff Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
	32	Initial Design Capture Volume	232	232	226	227	572	335	406	640	679	504	cubic-feet
	33	Total Impervious Area Dispersed to Pervious Surface	0	0	0	0	0	0	0	0	0	0	sq-ft
_	34	Total Pervious Dispersion Area	0	0	0	0	0	0	0	0	0	0	sq-ft
Dispersion	35	Ratio of Dispersed Impervious Area to Pervious Dispersion Area	n/a	ratio									
Area	36	Adjustment Factor for Dispersed & Dispersion Areas	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
Adjustments	37	Runoff Factor After Dispersion Techniques	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
	38	Design Capture Volume After Dispersion Techniques	232	232	226	227	572	335	406	640	679	504	cubic-feet
Tree & Barrel	39	Total Tree Well Volume Reduction	0	0	0	0	0	0	0	0	0	0	cubic-feet
Adjustments	40	Total Rain Barrel Volume Reduction	0	0	0	0	0	0	0	0	0	0	cubic-feet
	41	Final Adjusted Runoff Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
	42	Final Effective Tributary Area	3,272	3,272	3,197	3,200	8,069	4,730	5,738	9,031	9,586	7,119	sq-ft
Results	43	Initial Design Capture Volume Retained by Site Design Elements	0	0	0	0	0	0	0	0	0	0	cubic-feet
	44	Final Design Capture Volume Tributary to BMP	232	232	226	227	572	335	406	640	679	504	cubic-feet
Worksheet B 1-1				_===			- · -	220				-0.	

Worksheet B.1-1 General Notes:

A. Applicants may use this worksheet to calculate design capture volumes for up to 10 drainage areas User input must be provided for yellow shaded cells, values for all other cells will be automatically generated, errors/notifications will be highlighted in red and summarized below. Upon completion of this worksheet, proceed to the appropriate BMP Sizing worksheet(s).

Automated Worksheet B.4-1: Sizing Retention BMPs (V1.3)

Category	#	Description	i	ii	iii	iv	v	vi	vii	viii	ix	X	Units
	0	Drainage Basin ID or Name	BMP #11	BMP#12	BMP #13	BMP #14	BMP #15	BMP #16	BMP #17	BMP #18	BMP #19	BMP #20	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	in/hr
	2	Design Capture Volume Tributary to BMP	232	232	226	227	572	335	406	640	679	504	cubic-feet
BMP Inputs	3	Is Retention BMP Vegetated or Non-Vegetated?	Vegetated	unitless									
DMI Inputs	4	Provided Surface Area	200	200	200	200	500	200	200	710	710	710	sq-ft
	5	Provided Surface Ponding Depth	12	12	12	12	12	12	12	12	12	12	inches
	6	Provided Soil Media Thickness	24	24	24	24	24	24	24	24	24	24	inches
	7	Provided Gravel Storage Thickness	48	48	48	48	48	48	48	48	48	48	inches
	8	Volume Infiltrated Over 6 Hour Storm	50	50	50	50	125	50	50	178	178	178	cubic-feet
	9	Soil Media Pore Space	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	unitless
	10	Gravel Pore Space	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
T (*1,	11	Effective Depth of Retention Storage	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	24	24	24	24	24	24	24	24	24	24	hours
	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	80	80	80	80	80	80	80	80	80	80	hours
	14	Volume Retained by BMP	670	670	670	670	1,675	670	670	2,379	2,379	2,379	cubic-feet
	15	Fraction of DCV Retained	2.89	2.89	2.96	2.95	2.93	2.00	1.65	3.00	3.00	3.00	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	0	0	0	0	0	0	0	0	0	cubic-feet

Worksheet B.4-1 General Notes:

A. Applicants may use this worksheet to size Infiltration, Bioretention, and/or Permeable Pavement BMPs (INF-1, INF-2, INF-3) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully satisfying the pollutant control performance standards will have a deficit treated volume of zero and be highlighted in green.

Summary of Stormwater Pollutant Control Calculations (V1.3)

			o di i i i i i i i i i i i i i i i i i i			ant Control	Culculation	10 (11.5)					1
Category	#	Description	i	ii	iii	iv	v	vi	vii	viii	ix	X	Units
	0	Drainage Basin ID or Name	BMP #11	BMP#12	BMP #13	BMP #14	BMP #15	BMP #16	BMP #17	BMP #18	BMP #19	BMP #20	unitless
	1	85th Percentile Storm Depth	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	inches
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	in/hr
	3	Total Tributary Area	3,635	3,635	3,552	3,555	8,965	5,255	6,375	10,034	10,651	7,910	sq-ft
	4	85th Percentile Storm Volume (Rainfall Volume)	257	257	252	252	635	372	452	711	754	560	cubic-feet
Initial DCV	5	Initial Weighted Runoff Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	unitless
Illitial DCV	6	Initial Design Capture Volume	232	232	226	227	572	335	406	640	679	504	cubic-feet
Site Design Volume	7	Dispersion Area Reductions	0	0	0	0	0	0	0	0	0	0	cubic-feet
Reductions	8	Tree Well and Rain Barrel Reductions	0	0	0	0	0	0	0	0	0	0	cubic-feet
	9	Effective Area Tributary to BMP	3,272	3,272	3,197	3,200	8,069	4,730	5,738	9,031	9,586	7,119	square feet
BMP Volume	10	Final Design Capture Volume Tributary to BMP	232	232	226	227	572	335	406	640	679	504	cubic-feet
Reductions	11	Basin Drains to the Following BMP Type	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	Retention	unitless
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	232	232	226	227	572	335	406	640	679	504.00	cubic-feet
	13	Total Fraction of Initial DCV Retained within DMA	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	fraction
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	80.4%	%
	15	Percent of Average Annual Runoff Retention Required	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	40.0%	%
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	%
	17	Discharges to Secondary Treatment in Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	0	0	0	0	0	0	0	0	0	square feet
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
Result	21	Deficit of Effectively Treated Stormwater	0	0	0	0	0	0	0	0	0	0	cubic-feet

Summary Notes:

All fields in this summary worksheet are populated based on previous user inputs. If applicable, drainage basin elements that require revisions and/or supplemental information outside the scope of these worksheets are highlighted in orange and summairzed in the red text below. If all drainage basins achieve full compliance without a need for supplemental information, a green message will appear below.

-Congratulations, all specified drainage basins and BMPs are in compliance with stormwater pollutant control requirements. Include 11x17 color prints of this summary sheet and supporting worksheet calculations as part of the SWQMP submittal package.

Automated Worksheet B.4-1: Sizing Retention BMPs (V1.3)

Category	#	Description	i	ii	iii	iv	v	vi	vii	viii	ix	\boldsymbol{x}	Units
	0	Drainage Basin ID or Name	BMP #21	BMP#22	BMP #23	-	-	-	-	-	-	-	unitless
	1	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	-	-	-	-	-	-	-	in/hr
	2	Design Capture Volume Tributary to BMP	813	1,609	2,220	-	-	-	-	-	-	-	cubic-feet
BMP Inputs	3	Is Retention BMP Vegetated or Non-Vegetated?	Vegetated	Vegetated	Vegetated								unitless
DMF Inputs	4	Provided Surface Area	710	1,400	1,900								sq-ft
	5	Provided Surface Ponding Depth	12	12	12								inches
	6	Provided Soil Media Thickness	24	24	24								inches
	7	Provided Gravel Storage Thickness	48	48	48								inches
	8	Volume Infiltrated Over 6 Hour Storm	178	350	475	0	0	0	0	0	0	0	cubic-feet
	9	Soil Media Pore Space	0.25	0.25	0.25	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
	10	Gravel Pore Space	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	unitless
To Clausais a	11	Effective Depth of Retention Storage	37.2	37.2	37.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	inches
Infiltration Calculations	12	Drawdown Time for Surface Ponding (Post-Storm)	24	24	24	0	0	0	0	0	0	0	hours
	13	Drawdown Time for Entire Basin (Including 6 Hour Storm)	80	80	80	0	0	0	0	0	0	0	hours
	14	Volume Retained by BMP	2,379	4,690	6,365	0	0	0	0	0	0	0	cubic-feet
	15	Fraction of DCV Retained	2.93	2.91	2.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	16	Percentage of Performance Requirement Satisfied	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	17	Fraction of DCV Retained (normalized to 36-hr drawdown)	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ratio
	18	This BMP Overflows to the Following Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Result	19	Deficit of Effectively Treated Stormwater	0	0	0	n/a	cubic-feet						

Worksheet B.4-1 General Notes:

A. Applicants may use this worksheet to size Infiltration, Bioretention, and/or Permeable Pavement BMPs (INF-1, INF-2, INF-3) for up to 10 basins. User input must be provided for yellow shaded cells, values for blue cells are automatically populated based on user inputs from previous worksheets, values for all other cells will be automatically generated, errors/notifications will be highlighted in red/orange and summarized below. BMPs fully satisfying the pollutant control performance standards will have a deficit treated volume of zero and be highlighted in green.

Summary of Stormwater Pollutant Control Calculations (V1.3)

Category	#	Description	i	ii	iii	iv iv	v	vi	vii	viii	ix	χ	Units
	0	Drainage Basin ID or Name	BMP #21	BMP#22	BMP #23	-	-	-	-	-	-	-	unitless
	1	85th Percentile Storm Depth	0.85	0.85	0.85	-	-	-	-	-	-	-	inches
General Info	2	Design Infiltration Rate Recommended by Geotechnical Engineer	0.500	0.500	0.500	-	-	-	-	-	-	-	in/hr
	3	Total Tributary Area	12,755	25,240	34,830	-	-	-	-	-	-	-	sq-ft
	4	85th Percentile Storm Volume (Rainfall Volume)	903	1,788	2,467	-	-	-	-	-	-	-	cubic-feet
LittleDCV	5	Initial Weighted Runoff Factor	0.90	0.90	0.90	-	-	-	-	-	-	-	unitless
Initial DCV	6	Initial Design Capture Volume	813	1,609	2,220	-	-	-	-	-	-	-	cubic-feet
Site Design	7	Dispersion Area Reductions	0	0	0	-	-	-	-	-	-	-	cubic-feet
Volume Reductions	8	Tree Well and Rain Barrel Reductions	0	0	0	-	-	-	-	-	-	-	cubic-feet
	9	Effective Area Tributary to BMP	11,480	22,716	31,347	-	-	-	-	-	-	-	square feet
BMP Volume	10	Final Design Capture Volume Tributary to BMP	813	1,609	2,220	-	-	-	-	-	-	-	cubic-feet
Reductions	11	Basin Drains to the Following BMP Type	Retention	Retention	Retention	-	-	-	-	-	-	-	unitless
	12	Volume Retained by BMP (normalized to 36 hour drawdown)	813	1,609	2,220	-	-	-	-	-	-	-	cubic-feet
	13	Total Fraction of Initial DCV Retained within DMA	1.00	1.00	1.00	-	-	-	-	-	-	-	fraction
Total Volume Reductions	14	Percent of Average Annual Runoff Retention Provided	80.4%	80.4%	80.4%	-	-	-	-	-	-	-	%
	15	Percent of Average Annual Runoff Retention Required	40.0%	40.0%	40.0%	-	-	-	-	-	-	-	%
Performance Standard	16	Percent of Pollution Control Standard Satisfied	100.0%	100.0%	100.0%	-	-	-	-	-	-	-	%
	17	Discharges to Secondary Treatment in Drainage Basin	-	-	-	-	-	-	-	-	-	-	unitless
Treatment	18	Impervious Surface Area Still Requiring Treatment	0	0	0	-	-	-	-	-	-	-	square feet
Train	19	Impervious Surfaces Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
	20	Impervious Surfaces Not Directed to Downstream Dispersion Area	-	-	-	-	-	-	-	-	-	-	square feet
Result	21	Deficit of Effectively Treated Stormwater	0	0	0	-	-	-	-	-	-	-	cubic-feet

Summary Notes

All fields in this summary worksheet are populated based on previous user inputs. If applicable, drainage basin elements that require revisions and/or supplemental information outside the scope of these worksheets are highlighted in orange and summairzed in the red text below. If all drainage basins achieve full compliance without a need for supplemental information, a green message will appear below.

-Congratulations, all specified drainage basins and BMPs are in compliance with stormwater pollutant control requirements. Include 11x17 color prints of this summary sheet and supporting worksheet calculations as part of the SWQMP submittal package.

Geotechnical • Geologic • Coastal • Environmental

5741 Palmer Way • Carlsbad, California 92010 • (760) 438-3155 • FAX (760) 931-0915 • www.geosoilsinc.com

July 14, 2016

W.O. 7106-A-SC

Crossroads, LLC c/o Lundstrom Engineering and Surveying 5333 Mission Center Road, Suite 115 San Diego, California 92108

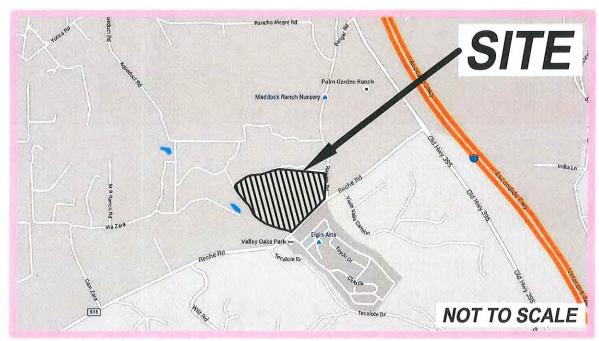
Attention: Mr. Jeff Lundstrom

Subject: Storm Water Infiltration Rate Evaluation, Reche Road and Ranger Road,

Fallbrook, TM 5449, San Diego County, California

Dear Mr. Lundstrom:

In accordance with your request and authorization, GeoSoils, Inc. (GSI) has prepared the following report regarding storm water infiltration at the subject site, located in the Fallbrook area of San Diego County (see Figure 1), as part of an overall geotechnical update of the site. GSI's scope of services included a review of the referenced reports/plans (see Appendix A), onsite infiltration testing, engineering and geologic analysis, and preparation of this report.


STORM WATER TREATMENT AND HYDROMODIFICATION MANAGEMENT

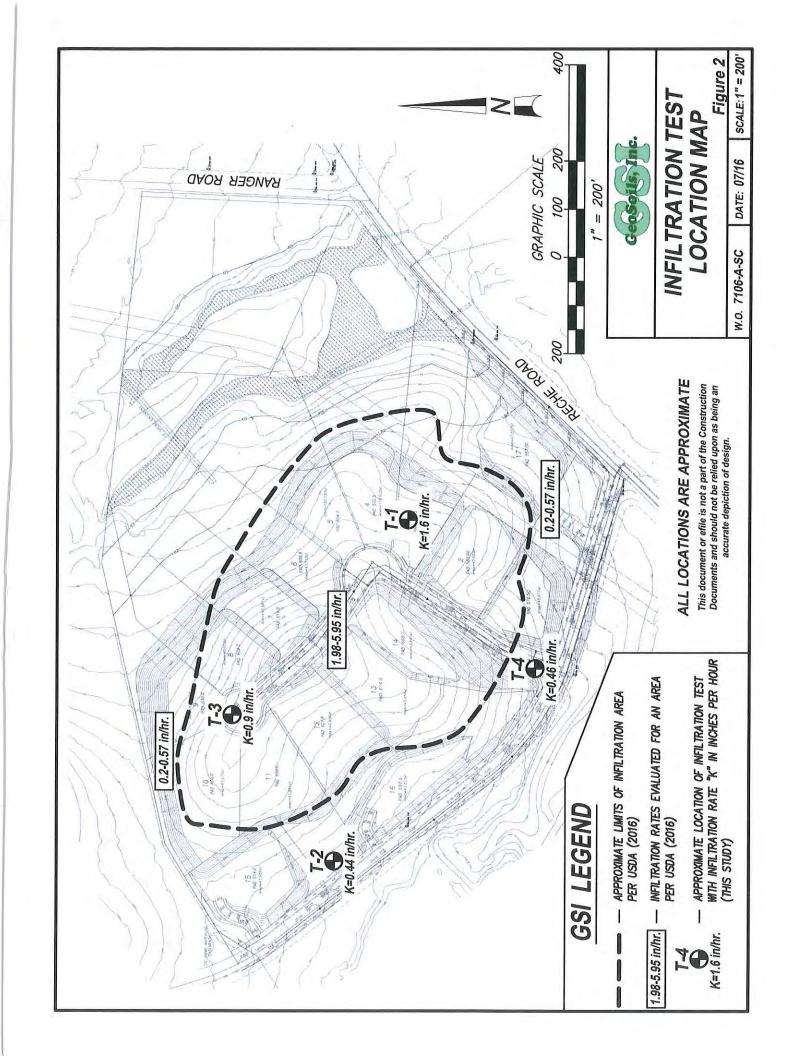
Infiltration Feasibility

In accordance with the BMP Design Manual (County, 2016), the infiltration feasibility for this site was evaluated. An evaluation of the soils hydraulic conductivity, or (*K*) was performed in accordance with the Porchet, or inverse auger hole method (Van Hoorm, 1979; USBR, 1984). Based on the testing performed, *K* values of 1.60 inches/hour (Test Hole T-1), 0.44 inches/hour (Test Hole T-2), 0.90 inches/hour (test hole T-3), and 0.46 inches/hour (Test Hole T-4) were evaluated. The approximate location of the testing sites is shown on Figure 2, which uses a preliminary grading plan, prepared by Lundstom Engineering and Surveying (LES) 2016, as a base. These values are generally both below, and above the recommended feasibility threshold of 0.52 inches per hour per the EPA (Clar, et al., 2004), and 0.50 inches per hour per the County (County, 2016) for full infiltration. It should be noted that a review of the United States Department of Agriculture database (USDA; 1973, 2015) indicates surficial soils were evaluated with infiltration rates on the order of 0.20 to 5.98 inches/hour across the site (see Figure 2); however, these rates are evaluated for surficial soils that would be removed and exported, or recompacted during mass grading, and as such, are not considered representative of "as-built" site conditions, or

Base Map: TOPO!® © 2003 National Geographic, U.S.G.S. Bonsall Quadrangle, California -- San Diego Co., 7.5 Minute, dated 1975, current, 1975.

Base Map: Google Maps, Copyright 2016 Google, Map Data Copyright 2016 Google

This map is copyrighted by Google 2016. It is unlawful to copy or reproduce all or any part thereof, whether for personal use or resale, without permission. All rights reserved.



w.o. 7106-A-SC

Figure 1

representative of rates for the relatively denser and less permeable soils at depth, that were evaluated as part of this report.

Based on our review and engineering analysis, areas suitable for either full, or partial infiltration occur onsite. However, it should be noted that the infiltration rates evaluated are for undisturbed, near surface native soils. Infiltration rates for compacted fills, and for native earth materials exposed within deeper cuts, will be substantially less. Compacted fills are considered as belonging to Hydrologic Soil Group "D" (no infiltration). For hydromodification structures located within 10 feet of a residential structure, storm water treatment and hydromodification management should be designed for no infiltration. An additional discussion of infiltration feasibility is presented in Appendix B, which contains a Categorization of infiltration feasibility condition, Worksheet C.4.1, provided by the County (2016).

Onsite Infiltration-Runoff Retention Systems

General design criteria regarding the use of onsite infiltration-runoff retention systems (OIRRS) are presented below.

Should onsite infiltration-runoff retention systems (OIRRS) be planned for Best Management Practices (BMP's) or Low Impact Development (LID) principles for the project, some guidelines should/must be followed in the planning, design, and construction of such systems. Such facilities, if improperly designed or implemented without consideration of the geotechnical aspects of site conditions, can contribute to flooding, saturation of bearing materials beneath site improvements, slope instability, and possible concentration and contribution of pollutants into the groundwater or storm drain and/or utility trench systems.

A key factor in these systems is the infiltration rate (sometimes referred to as the percolation rate) which can be ascribed to, or determined for, the earth materials within which these systems are installed. Additionally, the infiltration rate of the designed system (which may include gravel, sand, mulch/topsoil, or other amendments, etc.) will need to be considered. The project infiltration testing is very site specific, any changes to the location of the proposed OIRRS and/or estimated size of the OIRRS, may require additional infiltration testing. Locally, relatively impermeable formations include the underlying formational (granitic) bedrock, which is anticipated to have relatively very low vertical infiltration rate.

Some of the methods which are utilized for onsite infiltration include percolation basins, dry wells, bio-swale/bio-retention, permeable pavers/pavement, infiltration trenches, filter boxes and subsurface infiltration galleries/chambers. Some of these systems are constructed using native and import soils, perforated piping, and filter fabrics while others employ structural components such as stormwater infiltration chambers and filters/separators. Every site will have characteristics which should lend themselves to one or more of these methods, but not every site is suitable for OIRRS. In practice, OIRRS are

usually initially designed by the project design civil engineer. Selection of methods should include (but should not be limited to) review by licensed professionals including the geotechnical engineer, hydrogeologist, engineering geologist, project civil engineer, landscape architect, environmental professional, and industrial hygienist. Applicable governing agency requirements should be reviewed and included in design considerations. The following geotechnical guidelines should be considered when designing onsite infiltration-runoff retention systems:

- It is not good engineering practice to allow water to saturate soils, especially near slopes or improvements; however, the controlling agency/authority is now requiring this for OIRRS purposes on many projects.
- Wherever possible, infiltration systems should not be installed within ±50 feet of the tops of slopes steeper than 15 percent or within H/3 from the tops of slopes (where H equals the height of slope).
- Wherever possible, infiltrations systems should not be placed within a distance of H/2 from the toes of slopes (where H equals the height of slope).
- Wherever possible, infiltration systems should not be installed within 10 feet of a residential structure.
- The landscape architect should be notified of the location of the proposed OIRRS. If landscaping is proposed within the OIRRS, consideration should be given to the type of vegetation chosen and their potential effect upon subsurface improvements (i.e., some trees/shrubs will have an effect on subsurface improvements with their extensive root systems). Over-watering landscape areas above, or adjacent to, the proposed OIRRS could adversely affect performance of the system. Soil chemical amendment could alter soil chemistry, which may affect soil corrosion and permeability.
- Areas adjacent to, or within, the OIRRS that are subject to inundation should be properly protected against scouring, undermining, and erosion, in accordance with the recommendations of the design engineer.
- If subsurface infiltration galleries/chambers are proposed, the appropriate size, depth interval, and ultimate placement of the detention/infiltration system should be evaluated by the design engineer, and be of sufficient width/depth to achieve optimum performance, based on the infiltration rates provided. In addition, proper debris filter systems will need to be utilized for the infiltration galleries/chambers. Debris filter systems will need to be self cleaning and periodically and regularly maintained on a regular basis. Provisions for the regular and periodic maintenance of any debris filter system is recommended and this condition should be disclosed to all interested/affected parties.

• Where infiltration systems are located within setback areas noted above, impermeable liners and subdrains should be used along the bottom of bioretention swales/basins located within the influence of slopes and structures. Impermeable liners used in conjunction with bioretention basins should consist of a 30-mil polyvinyl chloride (PVC) membrane that is covered by a minimum of 12 inches of clean soil, free from rocks and debris, with a maximum 4:1 (h:v) slope inclination, or flatter, and meets the following minimum specifications:

Specific Gravity (ASTM D792): 1.2 (g/cc, min.); Tensile (ASTM D882): 73 (lb/in-width, min); Elongation at Break (ASTM D882): 380 (%, min); Modulus (ASTM D882): 32 (lb/in-width, min.); and Tear Strength (ASTM D1004): 8 (lb/in, min); Seam Shear Strength (ASTM D882) 58.4 (lb/in, min); Seam Peel Strength (ASTM D882) 15 (lb/in, min).

 Subdrains should consist of at least 4-inch diameter Schedule 40 or SDR 35 drain pipe with perforations oriented down. The drain pipe should be sleeved with a filter sock.

Final project plans (grading, precise grading, foundation, retaining wall, landscaping, etc.), should be reviewed by this office prior to construction, so that construction is in accordance with the conclusions and recommendations of this report. Based on our review, supplemental recommendations and/or further geotechnical studies may be warranted. It should be noted that structural and landscape plans were not available for review at this time.

LIMITATIONS

The conclusions and recommendations presented herein are professional opinions. These opinions have been derived in accordance with current standards of practice, and no warranty is express or implied. Standards of practice are subject to change with time. GSI assumes no responsibility or liability for work or testing performed by others, or their inaction; or work performed when GSI is not requested to be onsite, to evaluate if our recommendations have been properly implemented. Use of this report constitutes an agreement and consent by the user to all the limitations outlined above, notwithstanding any other agreements that may be in place. In addition, this report may be subject to review by the controlling authorities. Thus, this report brings to completion our scope of services for this portion of the project.

The opportunity to be of service is greatly appreciated. If you have any questions concerning this report, or if we may be of further assistance, please do not hesitate to

contact any of the undersigned.

Respectfully submitted SIGNAL

GeoSoils, Inc.

Robert G. Crisman

Engineering Geologist, CEG 1934

David W. Skelly

Civil Engineer, RCE 47857

RGC/DWS/JPF/jh

Attachments:

Appendix A - References

Appendix B - Infiltration Worksheet and Test Data

Distribution:

(2) Addressee

Certified Engineering Goologist

APPENDIX A REFERENCES

APPENDIX A

REFERENCES

- American Concrete Institute, 2011, Building code requirements for structural concrete (ACI 318-11), an ACI standard and commentary: reported by ACI Committee 318; Adopted May 24, published August.
- American Society of Civil Engineers, 2010, Minimum design loads for buildings and other structures, ASCE Standard ASCE/SEI 7-10.
- Blake, Thomas F., 2000, EQFAULT, A computer program for the estimation of peak horizontal acceleration from 3-D fault sources; Windows 95/98 version.
- Building News, 1995, CAL-OSHA, State of California, Construction Safety Orders, Title 8, Chapter 4, Subchapter 4, amended October 1.
- California Building Standards Commission, 2013a, California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on the 2012 International Building Code, 2013 California Historical Building Code, Title 24, Part 8; 2013 California Existing Building Code, Title 24, Part 10.
- _____, 2013b, 2013 California green building standards code of regulations, Title 24, Part 11, dated July.
- Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Willis, C.J., 2003, The revised 2002 California probalistic seismic hazard maps, dated June, http://www.conversation.ca.gov/cgs/rghm/psha/fault_parameters/pdf/documents /2002_ca_hazardmaps.pdf
- Clar, M.L., Bartfield, B.J., O'Conner, T.P., 2004, Stormwater best management practice design guide, volume 3, basin best management practices, US EPA/600/R-04/121B, dated September.
- GeoSoils, Inc., 2006, Memorandum: Evaluation of existing culverts crossing Reche Road, Fallbrook Oaks subdivision, Community of Fallbrook, County of San Diego, W.O. 4584-A-SC, dated May 11.
- _____, 2005a, Preliminary geotechnical investigation and rock hardness evaluation, ±26 acres located at the northwest corner of Reche Road and Ranger Road, Fallbrook, San Diego County, California, W.O. 4584-A-SC, dated December 21.
- _____, 2005b, Memorandum: Preliminary pavement sections, Fallbrook Hills Subdivision, APN 108-161-07, 17, Community of Fallbrook, County of San Diego, California, July 7.

- _____, 2004, Due diligence geotechnical review of site conditions, approximately 26 acres located at the northwest corner of Reche Road and Ranger Road, Community of Fallbrook, San Diego County, California, W.O. 4584-A-SC, dated November 9.
- Lundstrom Engineering and Surveying, undated, Preliminary grading plan for Fallbrook Oaks, TM 5449, San Diego County, California, no Job No., undated.
- San Diego County, 2016, County of San Diego BMP design manual, for permenant site design, storm water treatment and hydromodification management, storm water requirements for development applications, dated February 16.
- Sowers and Sowers, 1979, Unified soil classification system (After U. S. Waterways Experiment Station and ASTM 02487-667) in Introductory Soil Mechanics, New York.
- United States Department of Agriculture, National Resources Conservation Service, 2016, Custom soils report for San Diego County area, TM 5449, Fallbrook, dated July.
- United States Geological Survey, 2014, U.S. Seismic design maps, earthquake hazards program, http://geohazards.usgs.gov/designmaps/us/application.php. Version 3.1.0, dated July.
- Van Hoorm, J.W., 1979, Determining hydraulic conductivity with the inversed auger hole and infiltrometer methods.

APPENDIX B INFILTRATION WORKSHEET AND TEST DATA

From "Model BMP Design Manual, San Diego Region: Appendices, dated February 2016

Appendix C: Geotechnical and Groundwater Investigation Requirements

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Categorization of Infiltration Condition Worksheet 3.4-1 Part 1 - Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated? Criteria **Screening Question** Yes No Is the estimated reliable infiltration rate below proposed facility locations greater 1 Х than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. Provide basis: Onsite testing using the inverse auger hole, or "Porchet" method evaluated infiltration rates ranging between 0.44 to 1.6 inches per hour for native site soil. It should also be noted that any artificial fill, created through removal/recompaction of onsite soils, or infiltration within deeper levels of bedrock exposed in cut areas, would likely possess an infiltration rate below the 0.5 inch/hour threshold. See GSI report dated July 14, 2016 for other related discussions and references. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or 2 Х other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.

Provide basis:

Basins located within 10 feet of any residential structure or settlement sensitive improvement (walls, pavements, etc.) can adversely affect the performance of the improvement by: 1.) facilitating heave of expansive soil; 2.) Increasing soil moisture transmission rates through concrete flooring; and 3.) Increase the potential for a loss in bearing strength of soil, due to saturation. Mitigative grading for the support of structures generally involves the removal and recompaction of near surface soils. This is anticipated to create a permeability contrast, and the potential for the development of a shallow "perched" water table, which can be anticipated to migrate laterally, beneath the structure(s). Planned utilities in the vicinity would act as "french drains" and also be adversely affected. Graded slopes would be subject to an increased potential for instability due to the lateral migration of water from a potential infiltration area located up gradient from, or near the slope. See GSI report dated June 21, 2016 for other related discussions and references.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

C-11

From "Model BMP Design Manual, San Diego Region: Appendices, dated February 2016

Appendix C: Geotechnical and Groundwater Investigation Requirements

	Worksheet C.4.1 Page 2 of 4		
Criteria	Screening Question	Yes	No
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensible evaluation of the factors presented in Appendix C.3.	Х	
Provide b	asis:		
about 14	hillside development. However, a perched groundwater table was en feet below the existing ground surface, along the western side of the p and T-4), and should be considered in BMP design.		
	e findings of studies; provide reference to studies, calculations, maps, data sources, etc. ata source applicability.	Provide namat	tive discussion
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as a change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	Х	
Provide ba	isis:		
existing	hillside development. Perched groundwater was evaluated at a deptl grade along the west side of the site, and may be very near the surface courses during the rainy season.		
	e findings of studies; provide reference to studies, calculations, maps, data sources, etc. ata source applicability.	Provide narrat	ive discussion
Part 1 Result*	In the answers to rows 1-4 are "Yes" a full infiltration design is potentially feasible. screening category is Full Infiltration	The feasibility	proceed to part 2
	If any answer from row 1-4 is "No", infiltration may be possible to some extent but would be feasible or desirable to achieve a "full infiltration" design. Proceed to Part 2	l not generally	

^{*} To be completed using gathered site information and best professional judgement considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by [City Engineer] to substantiate findings.

From "Model BMP Design Manual, San Diego Region: Appendices, dated February 2016

Appendix C: Geotechnical and Groundwater Investigation Requirements

Worksheet C.4.1 Page 3 of 4 Part 2 - Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in an appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated? Criteria Screening Question Yes No Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on 5 X a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.

Provide basis:

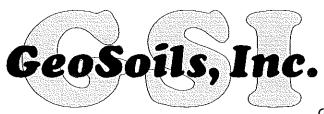
Site specific infiltration testing evaluated infiltration rates ranging between 0.44 and 1.6 inches per hour for onsite native soils. However, it should be noted that any artificial fill, created through removal/recompaction of onsite soils would likely possess a further reduced infiltration rate, and basins located within 10 feet of a residential structure, utility trench, or other improvement, would likely be adversely affected. See GSI report dated July 14, 2016 for other related discussions and references.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

6	Can infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.		
---	--	--	--

Provide basis:

Yes with exceptions and prescribed setbacks (see Report). Basins located within 10 feet of any residential structure can adversely affect the performance of the structures foundation system by: 1.) Increasing soil moisture transmission rates through concrete flooring; and 2.) Increase the potential for a loss in bearing strength of soil, due to saturation. Mitigative grading for the support of structures generally involves the removal and recompaction of near surface soils. This is anticipated to create a permeability contrast, and the potential for the development of a shallow "perched" water table, which can be anticipated to migrate laterally, beneath the structure(s), or offsite onsite adjacent property. Planned utilities in the vicinity would potentially act as "french drains" and also be adversely affected. Adjacent, offsite slopes are generally steeper than 3:1 (horizontal to vertical) and would be subject to an increased potential for instability due to the lateral migration of water from a potential infiltration area located up gradient. See GSI report dated July 14, 2016 for other related discussions and references.


Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.

From "Model BMP Design Manual, San Diego Region: Appendices, dated February 2016

Appendix C: Geotechnical and Groundwater Investigation Requirements

	Worksheet C.4.1 Page 4 of 4								
Criteria	Screening Question	Yes	No						
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X							
Provide b	asis:								
This is a l grades o	nillside development. Groundwater was evaluated at a depth of greater th Insite.	ıan 50 feet be	elow existing						
	ze findings of studies; provide reference to studies, calculations, maps, data sound of study/data source applicability.	rces, etc. Pro	vide narrative						
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	х							
Provide b	asis:								
	hillside development. The site currently drains offsite to the west are to be retained onsite.	nd south, ar	nd no runoff						
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.									
Part 2 Result*	If all answers from row 5-8 are yes then partial infiltration design is potentially for feasibility screening category is Partial Infiltration.	casible. The	Partial						
If any answer from row 5-8 is no, then infiltration of any volume is considered to be infeasible within the drainage area. The feasibility screening category is No Infiltration.									

^{*} To be completed using gathered site information and best professional judgement considering the definition of MEP in th. MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings.

Geotechnical • Geologic • Environmental

5741 Palmer Way • Carlsbad, California 92008 • (760)438-3155 • FAX(760)931-0915

INVERSED AUGER HOLE (PORCHET) METHOD - DATA SHEET

PROJECT:

TM 5449, Fallbrook

DATE: July, 2016

CLIENT:

Crossroads Investors I, LLC WORK ORDER: 7106-A-SC

HOLE NUMBER

T-1

USCS SOIL CLASSIFICATION

SM/SW

DEPTH (D') OF TEST HOLE (in)

51 1/2 inches

HOLE DIAMETER (in)

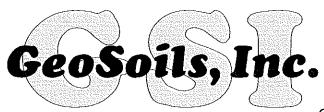
4.5 inches

HOLE RADIUS (r) (in)

2.25 inches

INITIAL WATER LEVEL (in) 25.0 inches (trial 1), 28.5 inches (trial 2)

Time	Δt (min)	t (min)	Ht (in)	ht (in)	ht + ½ r
1:45	0	0	25.0	16.0	27.625
2:25	40	40	46.50	12.5	6.125
2:31	0	0	28.5	23.0	24.125
2:48	17	17	36.0	15.5	16.625
3:02	14	31	40.75	10.75	11.875
3:22	20	51	45.25	6.25	7.5


 $K = 1.15 r tan \alpha$

where $\tan \alpha = [\log (h_0 + \frac{1}{2} r) - \log (h_1 + \frac{1}{2} r)] / t - t_0$

K = about 1.60 inches/hour

NOTES:

Colluvium within upper 24 inches, decomposed granite 24 to 51.5 inches.

Geotechnical • Geologic • Environmental

5741 Palmer Way • Carlsbad, California 92008 • (760)438-3155 • FAX(760)931-0915

INVERSED AUGER HOLE (PORCHET) METHOD - DATA SHEET

PROJECT: TM 5449, Fallbrook DATE: July, 2016

CLIENT: Crossroads Investors I, LLC WORK ORDER: 7106-A-SC

HOLE NUMBER T-2

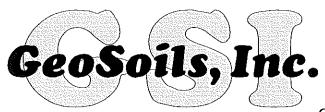
USCS SOIL CLASSIFICATION SM

DEPTH (D') OF TEST HOLE (in) 24.5 inches

HOLE DIAMETER (in) 4.5 inches

HOLE RADIUS (r) (in) 2.25 inches

INITIAL WATER LEVEL (in) 5.5 inches


Time	Δt (min)	t (min)	Ht (in)	ht (in)	ht + ½ r
2:19	0	0	5.5	19.0	20.125
2:38	29	29	14.5	10.0	11.125
3:08	30	59	16.5	8.0	9.125
3:38	30	89	18.125	6.37	7.5

 $K = 1.15 r tan \alpha$

where tan $\alpha = [\log (h_0 + \frac{1}{2}r) - \log (h_t + \frac{1}{2}r)] / t-t_0$

K = about 0.44 inches/hour

NOTES:

Geotechnical • Geologic • Environmental

5741 Palmer Way • Carlsbad, California 92008 • (760)438-3155 • FAX(760)931-0915

INVERSED AUGER HOLE (PORCHET) METHOD - DATA SHEET

PROJECT: TM 5449, Fallbrook

DATE: July, 2016

CLIENT: Crossroads Investors I, LLC WORK ORDER: 7106-A-SC

HOLE NUMBER T-3

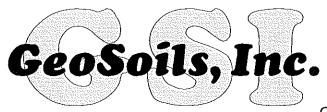
USCS SOIL CLASSIFICATION SM/SW

DEPTH (D') OF TEST HOLE (in) 36.0 inches

HOLE DIAMETER (in) 8 inches

HOLE RADIUS (r) (in) 4 inches

INITIAL WATER LEVEL (in) 12 inches


Time	Δt (min)	t (min)	Ht (in)	ht (in)	ht + ½ r
9:00	0	0	12	24	26
9:30	30	30	18	18	20
10:00	30	60	22	14	16
10:30	30	90	25	11	13
11:00	30	120	27.75	8.25	10.25

 $K = 1.15 r tan \alpha$

where $\tan \alpha = [\log (h_0 + \frac{1}{2}r) - \log (h_1 + \frac{1}{2}r)] / t - t_n$

K = about 0.9 inches/hour

NOTES:

Geotechnical • Geologic • Environmental

5741 Palmer Way • Carlsbad, California 92008 • (760)438-3155 • FAX(760)931-0915

INVERSED AUGER HOLE (PORCHET) METHOD - DATA SHEET

PROJECT: TM 5449, Fallbrook

DATE: July, 2016

CLIENT:

Crossroads Investors I, LLC WORK ORDER: 7106-A-SC

HOLE NUMBER

T-4

USCS SOIL CLASSIFICATION

SM

DEPTH (D') OF TEST HOLE (in)

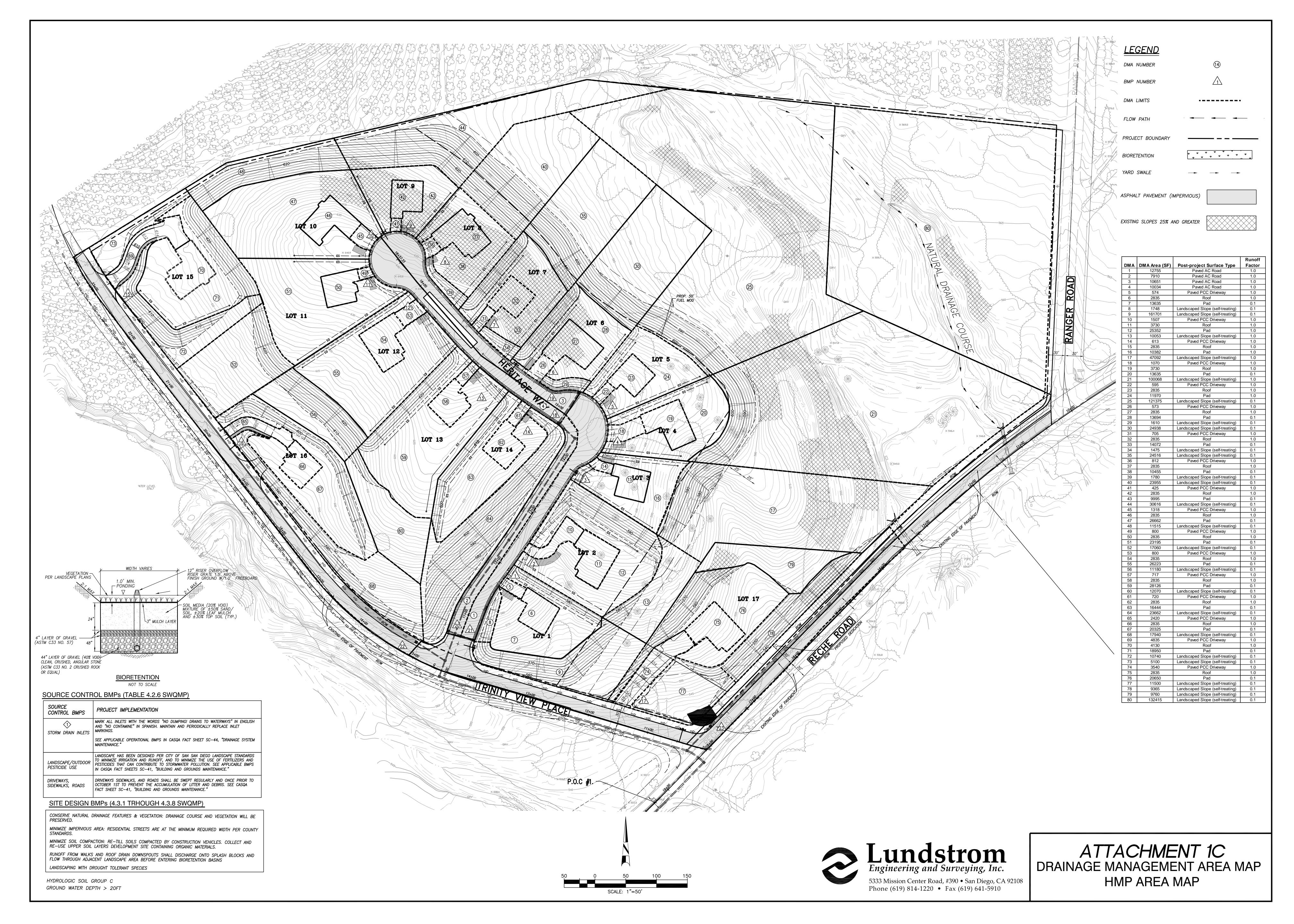
36.0 inches

HOLE DIAMETER (in) 8 inches

HOLE RADIUS (r) (in) 4 inches

INITIAL WATER LEVEL (in)

18 inches


Time	Δt (min)	t (min)	Ht (in)	ht (in)	ht + ½ r
10:15	0	0	18	18	20
10:45	30	30	21	15	17
11:15	30	60	23	13	15
11:45	30	90	24.25	11.75	13.75
12:15	30	120	25.75	10.25	12.25

 $K = 1.15 r tan \alpha$

where $\tan \alpha = [\log (h_0 + \frac{1}{2}r) - \log (h_1 + \frac{1}{2}r)] / t - t_0$

K = about 0.46 inches/hour

NOTES:

ATTACHMENT 2

BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

☐ Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

Indicate which Items are Included behind this cover sheet:

Attachment		
Sequence	Contents	Checklist
Attachment 2a	Flow Control Facility Design, including Structural BMP Drawdown Calculations and Overflow Design Summary (Required) See Chapter 6 and Appendix G of the BMP Design Manual	☐ Included☐ Submitted as separate standalone document
Attachment 2b	Hydromodification Management Exhibit (Required)	☐ Included See Hydromodification Management Exhibit Checklist on the back of this Attachment cover sheet.
Attachment 2c	Management of Critical Coarse Sediment Yield Areas See Section 6.2 and Appendix H of the BMP Design Manual.	 □ Exhibit depicting onsite and/or upstream sources of critical coarse sediment as mapped by Regional or Jurisdictional approaches outlined in Appendix H.1 AND, □ Demonstration that the project effectively avoids and bypasses sources of mapped critical coarse sediment per approaches outlined in Appendix H.2 and H.3. OR, □ Demonstration that project does not generate a net impact on the receiving water per approaches outlined in Appendix H.4.
Attachment 2d	Geomorphic Assessment of Receiving Channels (Optional)	□ Not performed□ Included

Template Date: August 28, 2017 LUEG:SW PDP SWQMP - Attachments

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

41 of 42

See Section 6.3.4 of the BMP Design Manual.	☐ Submitted as separate stand- alone document	
Vector Control Plan (Required when structural BMPs will not drain in 96 hours)		

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP - Attachments** The Hydromodification Management Exhibit must identify:

Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

·
Underlying hydrologic soil group
Approximate depth to groundwater
Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
Critical coarse sediment yield areas to be protected
Existing topography
Existing and proposed site drainage network and connections to drainage offsite
Proposed grading
Proposed impervious features
Proposed design features and surface treatments used to minimize imperviousness
Point(s) of Compliance (POC) for Hydromodification Management
Existing and proposed drainage boundary and drainage area to each POC (when necessary
create separate exhibits for pre-development and post-project conditions)
Structural BMPs for hydromodification management (identify location, type of BMP, and
size/detail)

SDHM 3.1 PROJECT REPORT

General Model Information

Project Name: FALLBROOK OAKS

Site Name: Fallbrook Oaks
Site Address: Reche Road

City: Fallbrook
Report Date: 4/11/2018
Gage: FALLBROO
Data Start: 10/01/1959
Data End: 09/30/2004

Timestep: Hourly Precip Scale: 1.000

Version Date: 2018/01/19

POC Thresholds

Low Flow Threshold for POC1: 10 Percent of the 2 Year

High Flow Threshold for POC1: 10 Year

FALLBROOK OAKS 4/11/2018 9:48:09 AM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

C,NatVeg,Moderate 0.2126951

Pervious Total 0.2126951

Impervious Land Use acre

Impervious Total 0

Basin Total 0.2126951

Element Flows To:

Surface Interflow Groundwater

FALLBROOK OAKS 4/11/2018 9:48:09 AM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total 0

Impervious Land Use IMPERVIOUS-FLAT acre

0.205808

Impervious Total 0.205808

Basin Total 0.205808

Element Flows To:

Surface Interflow Groundwater

Surface Biofilter 1 Surface Biofilter 1

FALLBROOK OAKS 4/11/2018 9:48:09 AM Page 4

Routing Elements Predeveloped Routing

FALLBROOK OAKS 4/11/2018 9:48:09 AM Page 5

Mitigated Routing

Biofilter 1

Bottom Length: 50.00 ft. Bottom Width: 10.00 ft. Material thickness of first layer: 2 **ESM** Material type for first layer: Material thickness of second layer: **GRAVEL** Material type for second layer:

Material thickness of third layer:

GRAVEL Material type for third layer:

Infiltration On 0.5 Infiltration rate: Infiltration safety factor: Total Volume Infiltrated (ac-ft.): 8.855 Total Volume Through Riser (ac-ft.): 0.989 Total Volume Through Facility (ac-ft.): 9.844 Percent Infiltrated: 89.95 Total Precip Applied to Facility: 0.414 Total Evap From Facility: 0.302

Underdrain not used Discharge Structure

Riser Height: 1 ft. Riser Diameter: 12 in.

Element Flows To:

Outlet 1 Outlet 2

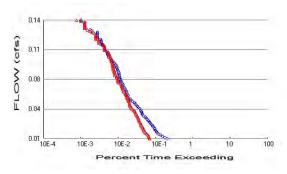
Biofilter Hydraulic Table

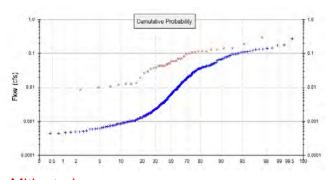
Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.0115	0.0000	0.0000	0.0000
0.0879	0.0115	0.0003	0.0000	0.0000
0.1758	0.0115	0.0006	0.0000	0.0000
0.2637	0.0115	0.0009	0.0000	0.0002
0.3516	0.0115	0.0012	0.0000	0.0004
0.4396	0.0115	0.0015	0.0000	0.0007
0.5275	0.0115	0.0018	0.0000	0.0008
0.6154	0.0115	0.0021	0.0000	0.0014
0.7033	0.0115	0.0024	0.0000	0.0021
0.7912	0.0115	0.0027	0.0000	0.0031
0.8791	0.0115	0.0030	0.0000	0.0031
0.9670	0.0115	0.0033	0.0000	0.0043
1.0549	0.0115	0.0036	0.0000	0.0058
1.1429	0.0115	0.0039	0.0000	0.0058
1.2308	0.0115	0.0042	0.0000	0.0058
1.3187	0.0115	0.0045	0.0000	0.0058
1.4066	0.0115	0.0048	0.0000	0.0058
1.4945	0.0115	0.0051	0.0000	0.0058
1.5824	0.0115	0.0054	0.0000	0.0058
1.6703	0.0115	0.0058	0.0000	0.0058
1.7582	0.0115	0.0061	0.0000	0.0058
1.8462	0.0115	0.0064	0.0000	0.0058
1.9341	0.0115	0.0067	0.0000	0.0058
2.0220	0.0115	0.0071	0.0000	0.0058
2.1099	0.0115	0.0075	0.0000	0.0058
2.1978	0.0115	0.0079	0.0000	0.0058

Stage(feet)Area(ac.)Volume(ac-ft.)Discharge(cfs)To Amended(cfs)Infilt(cfs) 6.0000 0.0115 0.0260 0.0000 0.0604 0.0000

6.0000	0.0115	0.0260	0.0000	0.0604	0.0000
6.0879	0.0115	0.0270	0.0000	0.0604	0.0000
6.1758	0.0115	0.0280	0.0000	0.0630	0.0000
6.2637	0.0115	0.0291	0.0000	0.0655	0.0000
6.3516	0.0115	0.0301	0.0000	0.0680	0.0000
6.4396	0.0115	0.0311	0.0000	0.0706	0.0000
6.5275	0.0115	0.0321	0.0000	0.0731	0.0000
6.6154	0.0115	0.0331	0.0000	0.0757	0.0000
6.7033	0.0115	0.0341	0.0000	0.0782	0.0000
6.7912	0.0115	0.0351	0.0000	0.0808	0.0000
6.8791	0.0115	0.0361	0.0000	0.0833	0.0000

6.9670	0.0115	0.0371	0.0000	0.0859	0.0000
7.0549	0.0115	0.0381	0.1365	0.0884	0.0000
7.1429	0.0115	0.0391	0.5635	0.0909	0.0000
7.2308	0.0115	0.0402	1.0991	0.0935	0.0000
7.3187	0.0115	0.0412	1.6096	0.0960	0.0000
7.4066	0.0115	0.0422	1.9818	0.0986	0.0000
7.4945	0.0115	0.0432	2.1930	0.1011	0.0000
7.5824	0.0115	0.0442	2.4037	0.1037	0.0000
7.6703	0.0115	0.0452	2.5787	0.1062	0.0000
7.7582	0.0115	0.0462	2.7426	0.1087	0.0000
7.8462	0.0115	0.0472	2.8972	0.1113	0.0000
7.9341	0.0115	0.0482	3.0440	0.1138	0.0000
8.0000	0.0115	0.0490	3.1841	0.1157	0.0000


Surface Biofilter 1


Element Flows To: Outlet 1

Outlet 2 Biofilter 1

FALLBROOK OAKS 4/11/2018 9:48:09 AM Page 9

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1 Total Pervious Area: 0.2126951

Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0

Total Impervious Area: 0.205808

Flow Frequency Method: Weibull

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.078426

 5 year
 0.121215

 10 year
 0.143738

 25 year
 0.187377

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.050365

 5 year
 0.112794

 10 year
 0.134644

 25 year
 0.198149

Duration Flows

The Facility PASSED

Flow(cfs) 0.0078	Predev 818	Mit 277	Percentage 33	Pass/Fail Pass
0.0078	708	270	38	
				Pass
0.0106	614	260	42	Pass
0.0120	529	250	47	Pass
0.0133	466	231	49	Pass
0.0147	439	213	48	Pass
0.0161	423	205	48	Pass
0.0175	396	194	48	Pass
0.0188	377	190	50	Pass
0.0202	362	179	49	Pass
0.0216	345	173	50	Pass
0.0229	328	169	51	Pass
0.0243	309	161	52	Pass
0.0257	289	158	54	Pass
0.0271	272	152	55	Pass
0.0284	256	147	57	Pass
0.0298	238	140	58	Pass
0.0312	223	136	60	Pass
0.0326	209	133	63	Pass
0.0339	188	127	67	Pass
0.0353	179	124	69	Pass
0.0367	174	118	67	Pass
0.0380	168	114	67	Pass
0.0394	163	109	66	Pass
0.0408	159	102	64	Pass
0.0422	151	94	62	Pass
0.0435	138	87	63	Pass
0.0449	132	84	63	Pass
0.0463	120	81	67	Pass
0.0477	113	80	70	Pass
0.0490	109	80	73	Pass
0.0504	95	76	80	Pass
0.0518	87	74	85	Pass
0.0531	82	72	87	Pass
0.0545	77	71	92	Pass
0.0559	73	67	91	Pass
0.0573	72 67	66	91	Pass
0.0586	67	64	95	Pass
0.0600	67	61	91	Pass
0.0614	67	58	86	Pass
0.0627	65	56	86	Pass
0.0641	61	54	88	Pass
0.0655	59	52	88	Pass
0.0669	57	51	89	Pass
0.0682	53	50	94	Pass
0.0696	53	48	90	Pass
0.0710	51	45	88	Pass
0.0724	49	41	83	Pass
0.0737	47	39	82	Pass
0.0751	46	39	84	Pass
0.0765	45	38	84	Pass
0.0778	44	36	81	Pass
0.0792	43	36	83	Pass

0.0806 43	33	76	Pass
0.0820 42	33	78	Pass
0.0833 42	32	76	Pass
0.0847 40	31	77 70	Pass
0.0861 39	31	79 70	Pass
0.0875 38	30 29	78 80	Pass
0.0888 36 0.0902 36	29 29	80 80	Pass Pass
0.0902 35	29 29	82	Pass
0.0929 34	28	82	Pass
0.0943 31	28	90	Pass
0.0957 29	27	93	Pass
0.0971 27	26	96	Pass
0.0984 26	26	100	Pass
0.0998 25	25	100	Pass
0.1012 22 0.1026 22	24 24	109 109	Pass Pass
0.1020 22	23	109	Pass
0.1053 21	23	109	Pass
0.1067 21	22	104	Pass
0.1080 19	20	105	Pass
0.1094 18	17	94	Pass
0.1108 17	17	100	Pass
0.1122 17	17	100	Pass
0.1135 17 0.1149 15	17 16	100 106	Pass Pass
0.1149 15	14	93	Pass
0.1177 14	12	85	Pass
0.1190 14	12	85	Pass
0.1204 14	12	85	Pass
0.1218 13	10	76	Pass
0.1231 11	10	90	Pass
0.1245 11 0.1259 11	10 10	90 90	Pass
0.1273	10	90 90	Pass Pass
0.1275	9	81	Pass
0.1300 11	8	72	Pass
0.1314 8	7	87	Pass
0.1328 7	6	85	Pass
0.1341 5	5	100	Pass
0.1355 5	5	100	Pass
0.1341 5 0.1355 5 0.1369 5 0.1382 5 0.1396 5 0.1410 5	5 5 5 5 5 5 5	100 100	Pass Pass
0.1396 5	5 5	100	Pass
0.1410 5	5	100	Pass
0.1424 4	4	100	Pass
0.1437 4	3	75	Pass

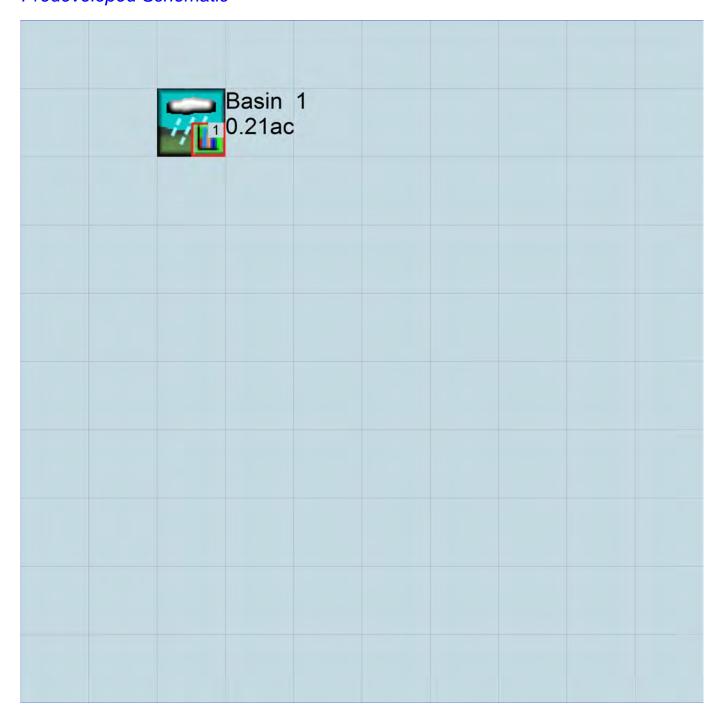
FALLBROOK OAKS 4/11/2018 9:48:18 AM Page 12

Water Quality

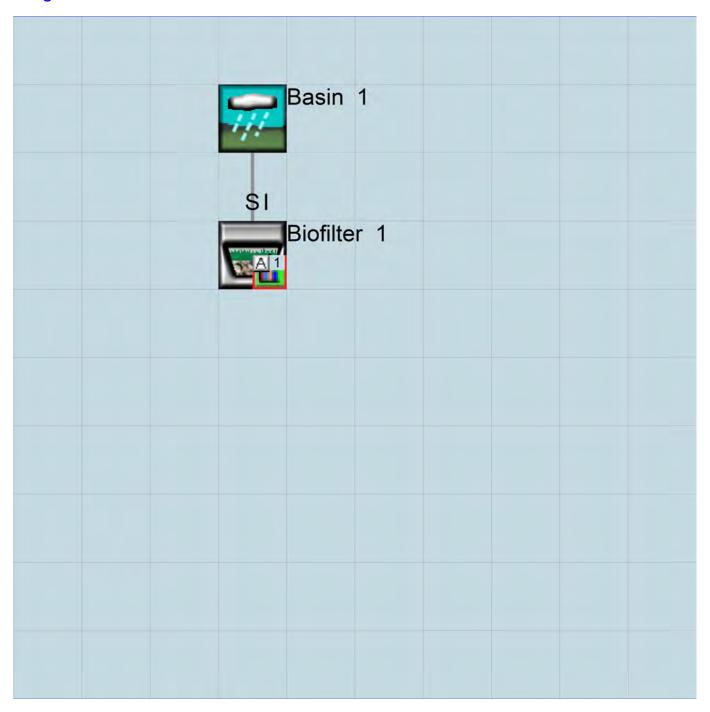
Model Default Modifications

Total of 0 changes have been made.

PERLND Changes


No PERLND changes have been made.

IMPLND Changes


No IMPLND changes have been made.

FALLBROOK OAKS 4/11/2018 9:48:18 AM Page 14

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

```
RUN
```

```
GLOBAL
 WWHM4 model simulation
                      END 3 0
 START 1959 10 01
                              2004 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                    UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
            <---->***
<-ID->
WDM
         26 FALLBROOK OAKS.wdm
MESSU
         25
            PreFALLBROOK OAKS.MES
            PreFALLBROOK OAKS.L61
         27
         28
             PreFALLBROOK OAKS.L62
         30 POCFALLBROOK OAKS1.dat
END FILES
OPN SEQUENCE
   INGRP
            20
                  INDELT 00:60
    PERLND
              501
    COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  Basin 1
                                                     1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
              1
   1 1
)1 1
               1
 501
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
            K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                             User t-series Engl Metr ***
                                   in out
                            1 1
        C, NatVeg, Moderate
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
20 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********* Print-flags **************** PIVL PYR
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
20 0 0 4 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
 PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR
20 0 0 2 2 0
                                        DEEPFR BASETP AGWETP 0 0.05 0.05
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4
    20
 END PWAT-PARM4
 MON-LZETPARM
  <PLS > PWATER input info: Part 3
  # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
20     0.4     0.4     0.4     0.6     0.6     0.6     0.6     0.4     0.4
 END MON-LZETPARM
 MON-INTERCEP
  <PLS > PWATER input info: Part 3
  END MON-INTERCEP
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
        ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
                                                        GWVS
  # - # *** CEPS SURS UZS IFWS LZS AGWS 20 0 0 0.01 0 0.4 0.01
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
             User t-series Engl Metr ***
  # - #
 END GEN-INFO
 *** Section IWATER***
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ****** Print-flags ***** PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
  # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 END IWAT-PARM2
```

```
IWAT-PARM3
         IWATER input info: Part 3 ***
  # - # ***PETMAX PETMIN
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS SURS
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
PERLND 20
                     0.2126951 COPY 501 12
0.2126951 COPY 501 13
PERLND 20
******Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
         Name Nexits Unit Systems Printer
  RCHRES
                                                         * * *
  # - #<----- User T-series Engl Metr LKFG
                                in out
                                                          * * *
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
   <PLS > ******** Active Sections *********************
  # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
  <PLS > ******* Print-flags ******** PIVL PYR
   \# - \# HYDR ADCA CONS HEAT SED ar{\mathsf{GQL}} OXRX NUTR PLNK PHCB PIVL PYR ********
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
   # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR KS DB50
 <----><----><---->
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
 END HYDR-INIT
END RCHRES
```

SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES

EXT SOURCES

<-Volume->		<member></member>	SsysSgap <mult>Tran</mult>		<-Target	vols>	<-Grp>	<-Member->	* * *
<name></name>	#	<name> #</name>	tem str	g<-factor->strg	<name></name>	# #		<name> # #</name>	* * *
WDM	2	PREC	ENGL	1	PERLND	1 999	EXTNL	PREC	
WDM	2	PREC	ENGL	1	IMPLND	1 999	EXTNL	PREC	
WDM	1	EVAP	ENGL	1	PERLND	1 999	EXTNL	PETINP	
WDM	1	EVAP	ENGL	1	IMPLND	1 999	EXTNL	PETINP	

END EXT SOURCES

EXT TARGETS

<-Volum	ne-> <-Gr	p> <-Memb	ber	-><	Mult>Tran	<-Volum	ne->	<member></member>	Tsys	Tgap	Amd ***
<name></name>	#	<name></name>	> #	#<	-factor->strg	<name></name>	#	<name></name>	tem	strg	strg***
COPY	501 OUTP	UT MEAN	1	1	12.1	WDM	501	FLOW	ENGL		REPL
END EXT TARGETS											

MASS-LINK

<volume></volume>	<-Grp>	<-Member->		<target></target>	<-Grp>	<-Member->**
<name></name>		<name> # #</name>	<-factor->	<name></name>		<name> # #***</name>
MASS-LINE	Χ	12				
PERLND	PWATER	SURO	0.083333	COPY	INPUT	MEAN
END MASS-	-LINK	12				
MASS-LINE	Χ	13				
PERLND	PWATER	IFWO	0.083333	COPY	INPUT	MEAN
END MASS-	-LINK	13				

END MASS-LINK

END RUN

FALLBROOK OAKS 4/11/2018 9:48:37 AM Page 20

```
Mitigated UCI File
RUN
GLOBAL
END GLOBAL
FILES
<File> <Un#>
<-ID->
WDM
MESSU
          25
          27
          28
END FILES
OPN SEQUENCE
   INGRP
     IMPLND
     GENER
     RCHRES
     RCHRES
     COPY
COPY
     DISPLY
```

```
WWHM4 model simulation
 START 1959 10 01 END 2004 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                    UNIT SYSTEM 1
            <---->***
         26 FALLBROOK OAKS.wdm
            MitFALLBROOK OAKS.MES
            MitFALLBROOK OAKS.L61
             MitFALLBROOK OAKS.L62
         28 MITFALLBROOK OAKS.Lb2
30 POCFALLBROOK OAKS1.dat
                  INDELT 00:60
             1
2
1
              ∠
1
              501
              1
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
          Surface Biofilter 1 MAX
   1
                                                    1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1 1
 501
          1
               1
 END TIMESERIES
END COPY
GENER
 OPCODE
       # OPCD ***
  2
 END OPCODE
 PARM
              K ***
   #
              0.
   2
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><-----Name---->NBLKS Unit-systems Printer ***
                              User t-series Engl Metr ***
   # - #
                                   in out
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ******** Active Sections ***********************
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
 END ACTIVITY
 PRINT-INFO
```

```
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
 END PRINT-INFO
 PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
 END PWAT-PARM1
 PWAT-PARM2
   WAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY
                                                                     AGWRC
 END PWAT-PARM2
 PWAT-PARM3
  WAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP
 END PWAT-PARM3
 PWAT-PARM4
   END PWAT-PARM4
 MON-LZETPARM
   <PLS > PWATER input info: Part 3
  # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
 END MON-LZETPARM
 MON-INTERCEP
   <PLS > PWATER input info: Part 3 ***
# - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
 END MON-INTERCEP
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
  ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
# - # *** CEPS SURS UZS IFWS LZS AG
                                                   LZS AGWS
                                                                      GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><-----> Unit-systems Printer ***
   # - #
                            User t-series Engl Metr ***
                                  in out ***
  1 IMPERVIOUS-FLAT
                               1 1 1 27 0
 END GEN-INFO
  *** Section IWATER***
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
1 0 0 1 0 0 0
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL ********
1 0 0 4 0 0 0 1 9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 1
 END IWAT-PARM1
 IWAT-PARM2
             IWATER input info: Part 2 *
LSUR SLSUR NSUR RETSC
100 0.05 0.011 0.1
   <PLS >
        100
   1
 END IWAT-PARM2
```

```
IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
1 0 0
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
   1
               Ω
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                      <--Area--> <-Target-> MBLK
<-Source->
<Name>  # Basin 1***
                       <-factor->
                                     <Name> # Tbl# ***
                           0.2058 RCHRES 1 5
IMPLND 1
*****Routing****
                          0.205808 COPY 1 15
1 RCHRES 2 8
1 COPY 501 17
1 COPY 501 17
IMPLND 1
RCHRES 1
RCHRES 2
RCHRES 1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
   RCHRES Name Nexits Unit Systems Printer
                                                                   * * *
                                                                   * * *
   # - #<----> User T-series Engl Metr LKFG
                                    in out
     Surface Biofilte-009 3 1 1 1 28 0
Biofilter 1 2 1 1 1 28 0
 END GEN-INFO
 *** Section RCHRES***
   <PLS > ******** Active Sections *********************
   # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
   END ACTIVITY
 PRINT-INFO
   <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 4 0 0 0 0 0 0 0 0 0 0 0 1 9 2 4 0 0 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section

      VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FG FG FG FG possible exit *** possible exit *** possible exit *** possible exit *** 0 1 0 0 4 5 6 0 0 0 1 0 0 0 0 2 1 2 2 2
```

```
END HYDR-PARM1
   HYDR-PARM2
    # - # FTABNO LEN DELTH STCOR KS DB50
                                                                                                                                   * * *
   <----><----><---->
                                                                                                                                   * * *
    1 1 0.01 0.0 0.0 0.5 0.0
2 2 0.01 0.0 0.0 0.5 0.0
   END HYDR-PARM2
   HYDR-INIT

      4.0
      5.0
      6.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0
      1 0
2 0
   END HYDR-INIT
END RCHRES
SPEC-ACTIONS
*** User-Defined Variable Quantity Lines
                                               addr
* * *
                                             <--->
*** kwd varnam optyp opn vari s1 s2 s3 tp multiply lc ls ac as agfn ***
   <****> <---> <--> <--> <-> <--> ***
   UVQUAN vol2 RCHRES 2 VOL 4
UVQUAN v2m2 GLOBAL WORKSP 1 3
UVQUAN vpo2 GLOBAL WORKSP 2 3
UVQUAN v2d2 GENER 2 K 1 3
*** User-Defined Target Variable Names
*** addr or
                                                                                     addr or
UVNAME v2m2 1 WORKSP 1 1.0 QUAN UVNAME vpo2 1 WORKSP 2 1.0 QUAN UVNAME v2d2 1 K 1 1.0 QUAN
v2m2
                                                                                      = 1073.
*** Compute remaining available pore space
                                                                                                = v2m2
                                                                        vpo2
                                                                                   = vziiiz
-= vol2
                                                                        vpo2
*** Check to see if VPORA goes negative; if so set VPORA = 0.0
IF (vpo2 < 0.0) THEN
 GENER 2
                                                                       vpo2
END IF
*** Infiltration volume
                                                                                      = vpo2
                                                                       v2d2
   GENER 2
END SPEC-ACTIONS
FTABLES
   FTABLE
    70 5
        Depth Area Volume Outflow1 Outflow2 Velocity Travel Time***
  Depth (acres) (acre-ft) (cfs) (cfs) (ft/sec) (Minutes)***

0.000000 0.011478 0.000000 0.000000 0.000000

0.087912 0.011478 0.000303 0.000000 0.000000

0.175824 0.011478 0.000605 0.000000 0.000041

0.263736 0.011478 0.000908 0.000000 0.000160

0.351648 0.011478 0.001211 0.000000 0.000401

0.439560 0.011478 0.001514 0.000000 0.000704
   0.527473 0.011478 0.001816 0.000000 0.000793
   0.615385 0.011478 0.002119 0.000000 0.001359
   0.703297 \quad 0.011478 \quad 0.002422 \quad 0.000000 \quad 0.002121

      0.791209
      0.011478
      0.002725
      0.000000
      0.003091

      0.879121
      0.011478
      0.003027
      0.000000
      0.003098

      0.967033
      0.011478
      0.003330
      0.000000
      0.004307

      1.054945
      0.011478
      0.003633
      0.000000
      0.005764

      1.142857
      0.011478
      0.003935
      0.000000
      0.005787

   1.230769 0.011478 0.004238 0.000000 0.005787
```

```
1.318681
             0.011478
                       0.004541
                                  0.000000
                                             0.005787
                                             0.005787
            0.011478
                       0.004844
                                  0.000000
  1.406593
  1.494505
            0.011478
                       0.005146
                                  0.00000
                                             0.005787
  1.582418
            0.011478
                       0.005449
                                  0.00000
                                             0.005787
  1.670330
            0.011478
                       0.005752
                                  0.00000
                                             0.005787
  1.758242
            0.011478
                       0.006055
                                  0.00000
                                             0.005787
            0.011478
                                  0.00000
  1.846154
                       0.006357
                                             0.005787
            0.011478
  1.934066
                       0.006660
                                  0.00000
                                             0.005787
  2.021978
            0.011478
                       0.007079
                                  0.00000
                                             0.005787
  2.109890
             0.011478
                       0.007498
                                  0.00000
                                             0.005787
  2.197802
            0.011478
                       0.007916
                                  0.000000
                                             0.005787
            0.011478
  2.285714
                       0.008335
                                  0.000000
                                             0.005787
  2.373626
            0.011478
                       0.008754
                                  0.00000
                                             0.005787
  2.461538
            0.011478
                       0.009173
                                  0.00000
                                             0.005787
  2.549451
             0.011478
                       0.009591
                                  0.00000
                                             0.005787
            0.011478
                       0.010010
                                  0.00000
  2.637363
                                             0.005787
                                             0.005787
  2.725275
            0.011478
                       0.010429
                                  0.000000
                                  0.00000
            0.011478
                       0.010848
                                             0.005787
  2.813187
  2.901099
            0.011478
                       0.011267
                                  0.00000
                                             0.005787
  2.989011
             0.011478
                       0.011685
                                  0.00000
                                             0.005787
            0.011478
  3.076923
                       0.012104
                                  0.000000
                                             0.005787
  3.164835
            0.011478
                       0.012523
                                  0.00000
                                             0.005787
  3.252747
            0.011478
                       0.012942
                                  0.00000
                                             0.005787
  3.340659
            0.011478
                       0.013360
                                  0.00000
                                             0.005787
  3.428571
            0.011478
                       0.013779
                                  0.000000
                                             0.005787
                                  0.00000
  3.516484
            0.011478
                       0.014198
                                             0.005787
                                  0.00000
  3.604396
            0.011478
                       0.014617
                                             0.005787
  3.692308
                       0.015035
                                  0.00000
            0.011478
                                             0.005787
  3.780220
            0.011478
                       0.015454
                                  0.000000
                                             0.005787
  3.868132
            0.011478
                       0.015873
                                  0.000000
                                             0.005787
            0.011478
                       0.016292
                                  0.00000
  3.956044
                                             0.005787
  4.043956
            0.011478
                       0.016711
                                  0.00000
                                             0.005787
  4.131868
             0.011478
                       0.017129
                                  0.00000
                                             0.005787
  4.219780
             0.011478
                       0.017548
                                  0.000000
                                             0.005787
            0.011478
                       0.017967
                                  0.000000
  4.307692
                                             0.005787
  4.395604
            0.011478
                       0.018386
                                  0.00000
                                             0.005787
  4.483516
            0.011478
                       0.018804
                                  0.00000
                                             0.005787
                       0.019223
  4.571429
            0.011478
                                  0.000000
                                             0.005787
  4.659341
            0.011478
                       0.019642
                                  0.00000
                                             0.005787
                       0.020061
                                             0.005787
  4.747253
            0.011478
                                  0.000000
            0.011478
  4.835165
                       0.020480
                                  0.000000
                                             0.005787
  4.923077
            0.011478
                       0.020898
                                  0.00000
                                             0.005787
  5.010989
            0.011478
                       0.021317
                                  0.00000
                                             0.005787
  5.098901
            0.011478
                       0.021736
                                  0.000000
                                             0.005787
            0.011478
                                  0.000000
  5.186813
                       0.022155
                                             0.005787
                                  0.00000
  5.274725
            0.011478
                       0.022573
                                             0.005787
  5.362637
            0.011478
                       0.022992
                                  0.000000
                                             0.005787
  5.450549
             0.011478
                       0.023411
                                  0.00000
                                             0.005787
  5.538462
            0.011478
                       0.023830
                                  0.00000
                                             0.005787
            0.011478
  5.626374
                       0.024248
                                  0.000000
                                             0.005787
  5.714286
            0.011478
                       0.024667
                                  0.00000
                                             0.005787
  5.802198
            0.011478
                       0.025086
                                  0.00000
                                             0.005787
  5.890110
            0.011478
                       0.025505
                                  0.00000
                                             0.005787
  5.978022
            0.011478
                       0.025924
                                  0.00000
                                             0.005787
  6.000000
            0.011478
                       0.054659
                                  0.00000
                                             0.005787
  END FTABLE
               2.
  FTABLE
   24
                                             Outflow2
     Depth
                         Volume
                                  Outflow1
                                                        outflow 3 Velocity
                                                                             Travel
                 Area
Time***
                                               (cfs)
      (ft)
              (acres) (acre-ft)
                                   (cfs)
                                                          (cfs)
                                                                   (ft/sec)
(Minutes) * * *
  0.000000 0.011478
                       0.000000
                                  0.00000
                                             0.000000
                                                        0.00000
                                  0.00000
                                                        0.00000
            0.011478
                       0.001009
                                             0.060414
  0.087912
                                  0.00000
  0.175824
            0.011478
                       0.002018
                                             0.062958
                                                        0.00000
  0.263736
            0.011478
                       0.003027
                                  0.00000
                                             0.065502
                                                        0.00000
  0.351648
            0.011478
                       0.004036
                                  0.000000
                                             0.068045
                                                        0.000000
            0.011478
  0.439560
                       0.005045
                                  0.000000
                                             0.070589
                                                        0.000000
  0.527473
            0.011478
                       0.006055
                                  0.00000
                                             0.073133
                                                        0.00000
            0.011478
                       0.007064
                                  0.00000
                                             0.075677
  0.615385
                                                        0.00000
```

```
0.879121 0.011478 0.010091 0.000000 0.083308 0.000000 0.967033 0.011478 0.011100 0.000000 0.085852 0.000000
   1.054945 0.011478 0.012109 0.136453 0.088395 0.000000

      1.318681
      0.011478
      0.015136
      1.609623
      0.096027
      0.000000

      1.406593
      0.011478
      0.016145
      1.981777
      0.098570
      0.000000

      1.494505
      0.011478
      0.017155
      2.193018
      0.101114
      0.000000

      1.582418
      0.011478
      0.018164
      2.403681
      0.103658
      0.000000

   1.670330 0.011478 0.019173 2.578717 0.106202 0.000000
   1.758242 0.011478 0.020182 2.742606 0.108746 0.000000
   1.846154 0.011478 0.021191 2.897238 0.111289 0.000000
   1.934066 \quad 0.011478 \quad 0.022200 \quad 3.044026 \quad 0.113833 \quad 0.000000
   2.000000 0.011478 0.022957 3.184053 0.115741
                                                                          0.000000
   END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
           # <Name> # tem strg<-lactor
2 PREC ENGL 1
2 PREC ENGL 1
1 EVAP ENGL 1
1 EVAP ENGL 1
2 PREC ENGL 1
1 EVAP ENGL 0.5
1 EVAP ENGL 0.7
MDM
                                                              IMPLND 1 999 EXTNL PREC
                                                            PERLND 1 999 EXTNL PETINP
WDM
                                                            IMPLND 1 999 EXTNL PETINP
MDM
                                                           RCHRES 1 EXTNL PREC
MDM
                                                                              EX....
EXLNT
                                                              RCHRES 1
RCHRES 2
MDM
                                                                                              POTEV
                                                                                   EXTNL POTEV
WDM
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
WDM 1006 FLOW ENGL
RCHRES 2 HYDR
                        RO 1 1 1
                                                                                                         REPL

      RCHRES
      2 HYDR
      RO
      1 1
      1
      WDM

      RCHRES
      2 HYDR
      O
      1 1
      1
      WDM

      RCHRES
      2 HYDR
      O
      2 1
      1
      WDM

      RCHRES
      2 HYDR
      STAGE
      1 1
      1
      WDM

      RCHRES
      1 HYDR
      STAGE
      1 1
      1
      WDM

      RCHRES
      1 HYDR
      O
      1 1
      1
      WDM

      COPY
      1 OUTPUT
      MEAN
      1 1
      12.1
      WDM

      COPY
      501
      OUTPUT
      MEAN
      1 1
      12.1
      WDM

                                                                      1006 FLOW ENGL
1010 FLOW ENGL
1011 FLOW ENGL
1007 STAG ENGL
1008 STAG ENGL
1009 FLOW ENGL
701 FLOW ENGL
801 FLOW ENGL
                                                                                                          REPL
                                                                                                         REPL
                                                                                                         REPL
                                                                                                         REPL
                                                                                                         REPL
                                                                                                         REPL
                                                                                                         REPL
END EXT TARGETS
MASS-LINK
<Volume> <-Grp> <-Member-><--Mult-->
                                                                                   <-Grp> <-Member->***
                                                              <Target>
               <Name> # #<-factor->
<Name>
                                                              <Name>
                                                                                              <Name> # #***
  MASS-LINK
                          5
                                        0.083333
                                                              RCHRES
                                                                                    INFLOW IVOL
IMPLND IWATER SURO
  END MASS-LINK
                           5
   MASS-LINK
                           8
RCHRES OFLOW OVOL
                                    2
                                                              RCHRES
                                                                                   INFLOW IVOL
   END MASS-LINK
                           8
   MASS-LINK
                          15
IMPLND IWATER SURO
                                          0.083333
                                                              COPY
                                                                                    INPUT MEAN
   END MASS-LINK 15
   MASS-LINK
RCHRES OFLOW OVOL
                                                              COPY
                                                                                  INPUT MEAN
                          17
   END MASS-LINK
```

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2018; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

FALLBROOK OAKS 4/11/2018 9:48:38 AM Page 29

SDHM 3.1 PROJECT REPORT

General Model Information

Project Name: FALLBROOK OAKS BMP 18-21

Site Name: Fallbrook Oaks
Site Address: Reche Road

City: Fallbrook
Report Date: 4/11/2018
Gage: FALLBROO
Data Start: 10/01/1959
Data End: 09/30/2004

Timestep: Hourly Precip Scale: 1.000

Version Date: 2018/01/19

POC Thresholds

Low Flow Threshold for POC1: 10 Percent of the 2 Year

High Flow Threshold for POC1: 10 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C,NatVeg,Moderate 0.308884

Pervious Total 0.308884

Impervious Land Use acre

Impervious Total 0

Basin Total 0.308884

Element Flows To:

Surface Interflow Groundwater

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total 0

Impervious Land Use IMPERVIOUS-FLAT acre

0.2928145

Impervious Total 0.2928145

Basin Total 0.2928145

Element Flows To:

Surface Interflow Groundwater

Surface Biofilter 1 Surface Biofilter 1

Routing Elements Predeveloped Routing

Mitigated Routing

Biofilter 1

Bottom Length: 71.00 ft. Bottom Width: 10.00 ft. Material thickness of first layer: 2 **ESM** Material type for first layer: Material thickness of second layer: Material type for second layer: **GRAVEL**

0.5

12.6

1.405

14.005

Material thickness of third layer:

GRAVEL

Material type for third layer: Infiltration On Infiltration rate: Infiltration safety factor: Total Volume Infiltrated (ac-ft.): Total Volume Through Riser (ac-ft.): Total Volume Through Facility (ac-ft.): Percent Infiltrated:

89.97 Total Precip Applied to Facility: 0.588 Total Evap From Facility: 0.43

Underdrain not used Discharge Structure

Riser Height: 1 ft. Riser Diameter: 12 in.

Element Flows To:

Outlet 1 Outlet 2

Biofilter Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.0163	0.0000	0.0000	0.0000
0.0879	0.0163	0.0004	0.0000	0.0000
0.1758	0.0163	0.0009	0.0000	0.0001
0.2637	0.0163	0.0013	0.0000	0.0002
0.3516	0.0163	0.0017	0.0000	0.0006
0.4396	0.0163	0.0021	0.0000	0.0010
0.5275	0.0163	0.0026	0.0000	0.0011
0.6154	0.0163	0.0030	0.0000	0.0019
0.7033	0.0163	0.0034	0.0000	0.0030
0.7912	0.0163	0.0039	0.0000	0.0044
0.8791	0.0163	0.0043	0.0000	0.0044
0.9670	0.0163	0.0047	0.0000	0.0061
1.0549	0.0163	0.0052	0.0000	0.0082
1.1429	0.0163	0.0056	0.0000	0.0082
1.2308	0.0163	0.0060	0.0000	0.0082
1.3187	0.0163	0.0064	0.0000	0.0082
1.4066	0.0163	0.0069	0.0000	0.0082
1.4945	0.0163	0.0073	0.0000	0.0082
1.5824	0.0163	0.0077	0.0000	0.0082
1.6703	0.0163	0.0082	0.0000	0.0082
1.7582	0.0163	0.0086	0.0000	0.0082
1.8462	0.0163	0.0090	0.0000	0.0082
1.9341	0.0163	0.0095	0.0000	0.0082
2.0220	0.0163	0.0101	0.0000	0.0082
2.1099	0.0163	0.0106	0.0000	0.0082
2.1978	0.0163	0.0112	0.0000	0.0082

2.2857 2.3736 2.4615 2.5495 2.6374 2.7253 2.8132 2.9011 2.9890 3.0769 3.1648	0.0163 0.0163 0.0163 0.0163 0.0163 0.0163 0.0163 0.0163 0.0163	0.0118 0.0124 0.0130 0.0136 0.0142 0.0148 0.0154 0.0160 0.0166 0.0172 0.0178	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082
3.2527	0.0163	0.0184	0.0000	0.0082
3.3407	0.0163	0.0190	0.0000	0.0082
3.4286	0.0163	0.0196	0.0000	0.0082
3.5165	0.0163	0.0202	0.0000	0.0082
3.6044	0.0163	0.0208	0.0000	0.0082
3.6923	0.0163	0.0214	0.0000	0.0082
3.7802	0.0163	0.0219	0.0000	0.0082
3.8681	0.0163	0.0225	0.0000	0.0082
3.9560	0.0163	0.0231	0.0000	0.0082
4.0440	0.0163	0.0237	0.0000	0.0082
4.1319	0.0163	0.0243	0.0000	0.0082
4.2198	0.0163	0.0249	0.0000	0.0082
4.3077	0.0163	0.0255	0.0000	0.0082
4.3956	0.0163	0.0261	0.0000	0.0082
4.4835	0.0163	0.0267	0.0000	0.0082
4.5714	0.0163	0.0273	0.0000	0.0082
4.6593	0.0163	0.0279	0.0000	0.0082
4.7473	0.0163	0.0285	0.0000	0.0082
4.8352	0.0163	0.0291	0.0000	0.0082
4.9231	0.0163	0.0297	0.0000	0.0082
5.0110	0.0163	0.0303	0.0000	0.0082
5.0989	0.0163	0.0309	0.0000	0.0082
5.1868	0.0163	0.0315	0.0000	0.0082
5.2747	0.0163	0.0321	0.0000	0.0082
5.3626	0.0163	0.0326	0.0000	0.0082
5.4505	0.0163	0.0332	0.0000	0.0082
5.5385	0.0163	0.0338	0.0000	0.0082
5.6264	0.0163	0.0344	0.0000	0.0082
5.7143	0.0163	0.0350	0.0000	0.0082
5.8022	0.0163	0.0356	0.0000	0.0082
5.8901	0.0163	0.0362	0.0000	0.0082
5.9780	0.0163	0.0368	0.0000	0.0082
6.0000	0.0163	0.0370	0.0000	0.0082

Biofilter Hydraulic Table

Stage(feet)Area(ac.)Volume(ac-ft.)Discharge(cfs)To Amended(cfs)Infilt(cfs) 6.0000 0.0163 0.0370 0.0000 0.0858 0.00006.0879 0.0163 0.0384 0.0000 0.0858 0.0000 0.0163 6.1758 0.0398 0.0000 0.0894 0.0000 6.2637 0.0163 0.0413 0.0000 0.0930 0.0000 0.0163 0.0000 0.0966 0.0000 6.3516 0.0427 6.4396 0.0163 0.0441 0.0000 0.1002 0.0000 6.5275 0.0163 0.0456 0.0000 0.1038 0.0000 6.6154 0.0163 0.0470 0.0000 0.1075 0.0000 6.7033 0.0163 0.0484 0.0000 0.1111 0.0000 0.0163 0.1147 6.7912 0.0499 0.0000 0.0000

0.0000

0.0163

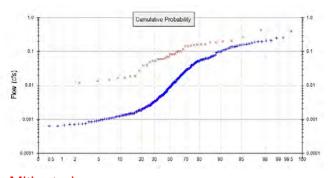
0.0513

6.8791

0.1183

0.0000

6.9670	0.0163	0.0527	0.0000	0.1219	0.0000
7.0549	0.0163	0.0542	0.1365	0.1255	0.0000
7.1429	0.0163	0.0556	0.5635	0.1291	0.0000
7.2308	0.0163	0.0570	1.0991	0.1327	0.0000
7.3187	0.0163	0.0585	1.6096	0.1364	0.0000
7.4066	0.0163	0.0599	1.9818	0.1400	0.0000
7.4945	0.0163	0.0613	2.1930	0.1436	0.0000
7.5824	0.0163	0.0628	2.4037	0.1472	0.0000
7.6703	0.0163	0.0642	2.5787	0.1508	0.0000
7.7582	0.0163	0.0656	2.7426	0.1544	0.0000
7.8462	0.0163	0.0671	2.8972	0.1580	0.0000
7.9341	0.0163	0.0685	3.0440	0.1616	0.0000
8.0000	0.0163	0.0696	3.1841	0.1644	0.0000


Surface Biofilter 1

Element Flows To: Outlet 1

Outlet 2 Biofilter 1

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1 Total Pervious Area: 0.308884

Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0

Total Impervious Area: 0.2928145

Flow Frequency Method: Weibull

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.113893

 5 year
 0.176033

 10 year
 0.208742

 25 year
 0.272116

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.069242

 5 year
 0.159172

 10 year
 0.189668

 25 year
 0.280883

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0114	818	281	34	Pass
0.0134	708	271	38	Pass
0.0154	614	259	42	Pass
0.0174	529	245	46	Pass
0.0194	466	226	48	Pass
0.0214	439	215	48	Pass
0.0234	423	205	48	Pass
0.0253	396	194	48	Pass
0.0273	377	185	49	Pass
0.0293	362	178	49	Pass
0.0313	345	173	50	Pass
0.0333	328	170	51	Pass
0.0353	309	161	52	Pass
0.0373	289	156	53	Pass
0.0393	272	148	54	Pass
0.0413	256	137	53	Pass
0.0433	238	136	57	Pass
0.0453	223	131	58	Pass
0.0473	209	128	61	Pass
0.0493	188	122	64	Pass
0.0513	179	119	66	Pass
0.0533	174	112	64	Pass
0.0552	168	109	64	Pass
0.0572	164	102	62	Pass
0.0592	159	95	59	Pass
0.0612	151	87	57	Pass
0.0632	138	86	62	Pass
0.0652	132	82	62	Pass
0.0672	120	80	66	Pass
0.0692	113	79 75	69	Pass
0.0712	109	75 75	68	Pass
0.0732	95 97	75 72	78 82	Pass
0.0752	87 82	69	84	Pass
0.0772 0.0792	77	66	85	Pass Pass
0.0792	77 73	64	87	Pass
0.0832	73 72	60	83	Pass
0.0851	67	58	86	Pass
0.0871	67	57	85	Pass
0.0891	67	56	83	Pass
0.0911	65	55	84	Pass
0.0931	61	53	86	Pass
0.0951	59	51	86	Pass
0.0971	57	51	89	Pass
0.0991	53	49	92	Pass
0.1011	53	43	81	Pass
0.1031	51	39	76	Pass
0.1051	49	39	79	Pass
0.1071	47	39	82	Pass
0.1091	46	39	84	Pass
0.1111	45	36	80	Pass
0.1131	44	36	81	Pass
0.1150	43	35	81	Pass

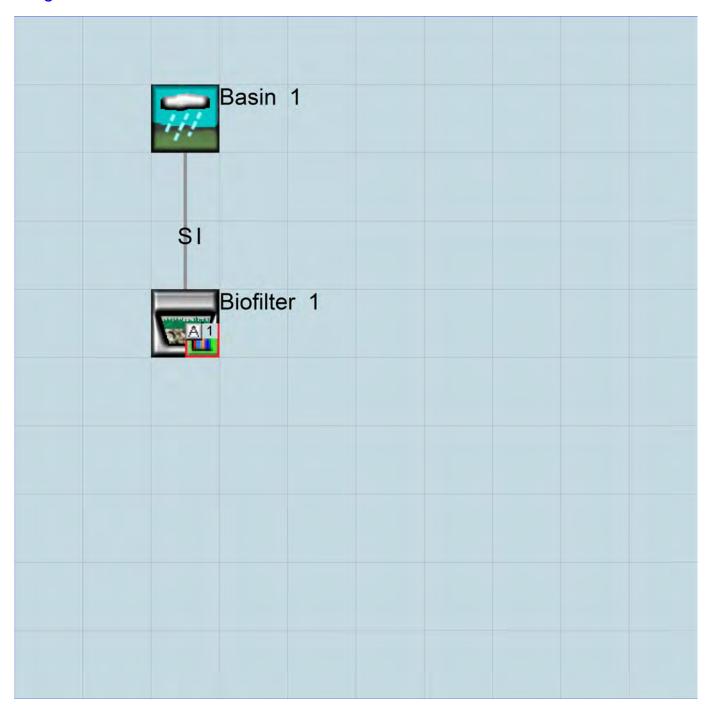
Water Quality

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                      END 2004 09 30 3 0
 START 1959 10 01
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                    UNIT SYSTEM 1
END GLOBAL
FILES
            <---->***
<File> <Un#>
<-ID->
         26
            FALLBROOK OAKS BMP 18-21.wdm
MDM
MESSII
         25
            PreFALLBROOK OAKS BMP 18-21.MES
            PreFALLBROOK OAKS BMP 18-21.L61
         27
             PreFALLBROOK OAKS BMP 18-21.L62
         30 POCFALLBROOK OAKS BMP 18-211.dat
END FILES
OPN SEQUENCE
   INGRP
            20
                  INDELT 00:60
    PERLND
              501
    COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  1 Basin 1
                                                     1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1
)1 1
              1
               1
 501
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
            K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                         User t-series Engl Metr ***
                                   in out
                            1 1
        C, NatVeg, Moderate
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
20 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********* Print-flags **************** PIVL PYR
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
20 0 0 4 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  END PWAT-PARM1
 PWAT-PARM2
  80
 END PWAT-PARM2
 PWAT-PARM3
 PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR
20 0 0 2 2 0

END DWAT DADM3
                                        DEEPFR BASETP AGWETP 0 0.05 0.05
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4
     20
 END PWAT-PARM4
 MON-LZETPARM
  <PLS > PWATER input info: Part 3
  # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
20     0.4     0.4     0.4     0.6     0.6     0.6     0.6     0.4     0.4
 END MON-LZETPARM
 MON-INTERCEP
  <PLS > PWATER input info: Part 3
  END MON-INTERCEP
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
        ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS SURS UZS IFWS LZS AGWS 20 0 0 0.01 0 0.4 0.01
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
             User t-series Engl Metr ***
  # - #
 END GEN-INFO
 *** Section IWATER***
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ****** Print-flags ***** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
  # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 END IWAT-PARM2
```

```
IWAT-PARM3
  # - # ***PETMAX PETMIN
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS SURS
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
PERLND 20
                     0.308884 COPY 501 12
0.308884 COPY 501 13
PERLND 20
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
         Name Nexits Unit Systems Printer
  RCHRES
                                                       * * *
  # - #<---- User T-series Engl Metr LKFG
                              in out
                                                       * * *
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  <PLS > ******** Active Sections *********************
  # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
  <PLS > ******* Print-flags ******** PIVL PYR
  \# - \# HYDR ADCA CONS HEAT SED ar{GQL} OXRX NUTR PLNK PHCB PIVL PYR ********
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR KS DB50
 <----><----><---->
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
 END HYDR-INIT
```

END RCHRES

SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES

EXT SOURCES

<-Volume	->	<member></member>	SsysSga	p <mult>Tran</mult>	<-Target	vols>	<-Grp>	<-Member->	* * *
<name></name>	#	<name> #</name>	tem str	g<-factor->strg	<name></name>	# #		<name> # #</name>	* * *
WDM	2	PREC	ENGL	1	PERLND	1 999	EXTNL	PREC	
WDM	2	PREC	ENGL	1	IMPLND	1 999	EXTNL	PREC	
WDM	1	EVAP	ENGL	1	PERLND	1 999	EXTNL	PETINP	
WDM	1	EVAP	ENGL	1	IMPLND	1 999	EXTNL	PETINP	

END EXT SOURCES

EXT TARGETS

MASS-LINK

<volume></volume>	<-Grp>	<-Member->< <name> # #<</name>		<target> <name></name></target>	<-Grp>	<-Member->*** <name> # #***</name>
			-lactor->	\Name>		Name/ # #
MASS-LIN	K.	12				
PERLND	PWATER	SURO	0.083333	COPY	INPUT	MEAN
END MASS	-LINK	12				
MASS-LIN	K	13				
PERLND	PWATER	IFWO	0.083333	COPY	INPUT	MEAN
END MASS	-LINK	13				

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START 1959 10 01 END 2004 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                     UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
            <---->***
<-ID->
WDM
         26 FALLBROOK OAKS BMP 18-21.wdm
MESSU
         25
            MitFALLBROOK OAKS BMP 18-21.MES
            MitFALLBROOK OAKS BMP 18-21.L61
         27
         28
             MitFALLBROOK OAKS BMP 18-21.L62
         MITFALLBROOK OAKS BMP 18-21.Lo2
30 POCFALLBROOK OAKS BMP 18-211.dat
END FILES
OPN SEQUENCE
   INGRP
                  INDELT 00:60
              1
2
1
    IMPLND
     GENER
    RCHRES
              ∠
1
    RCHRES
    COPY
COPY
              501
    DISPLY
              1
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
          Surface Biofilter 1 MAX
   1
                                                      1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1 1
 501
           1
               1
 END TIMESERIES
END COPY
GENER
 OPCODE
       # OPCD ***
   2
 END OPCODE
 PARM
               K ***
   #
               0.
   2
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><-----Name---->NBLKS Unit-systems Printer ***
                              User t-series Engl Metr ***
   # - #
                                    in out
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
 END ACTIVITY
 PRINT-INFO
```

```
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
 END PRINT-INFO
 PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
 END PWAT-PARM1
 PWAT-PARM2
   WAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY
                                                                  AGWRC
 END PWAT-PARM2
 PWAT-PARM3
  WAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP
 END PWAT-PARM3
 PWAT-PARM4
  END PWAT-PARM4
 MON-LZETPARM
   <PLS > PWATER input info: Part 3
  # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
 END MON-LZETPARM
 MON-INTERCEP
  <PLS > PWATER input info: Part 3 ***
# - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
 END MON-INTERCEP
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
  ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
# - # *** CEPS SURS UZS IFWS LZS AG
                                                                   GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><-----> Unit-systems Printer ***
   # - #
                          User t-series Engl Metr ***
                                 in out ***
  1 IMPERVIOUS-FLAT
                              1 1 1 27 0
 END GEN-INFO
 *** Section IWATER***
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
1 0 0 1 0 0 0
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL ********
1 0 0 4 0 0 0 1 9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 1
 END IWAT-PARM1
 IWAT-PARM2
       <PLS >
   1
```

END IWAT-PARM2

```
IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
1 0 0
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
   1
               Ω
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                      <--Area--> <-Target-> MBLK
<-Source->
<Name>  # Basin 1***
                       <-factor->
                                     <Name> # Tbl# ***
                            0.2928 RCHRES 1 5
IMPLND 1
*****Routing****
                         0.2928145 COPY 1 15
1 RCHRES 2 8
1 COPY 501 17
1 COPY 501 17
IMPLND 1
RCHRES 1
RCHRES 2
RCHRES 1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
   RCHRES Name Nexits Unit Systems Printer
                                                                   * * *
                                                                   * * *
   # - #<----> User T-series Engl Metr LKFG
                                    in out
     Surface Biofilte-004 3 1 1 1 28 0
Biofilter 1 2 1 1 1 28 0
 END GEN-INFO
 *** Section RCHRES***
   <PLS > ******** Active Sections **********************
   # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
      2
 END ACTIVITY
 PRINT-INFO
   <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 4 0 0 0 0 0 0 0 0 0 0 0 1 9 2 4 0 0 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section

      VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FG FG FG FG possible exit *** possible exit *** possible exit *** possible exit *** 0 1 0 0 4 5 6 0 0 0 1 0 0 0 0 2 1 2 2 2

   1
```

```
END HYDR-PARM1
  HYDR-PARM2
   # - # FTABNO LEN DELTH STCOR KS DB50
                                                                                                                   * * *
   <----><----><---->
                                                                                                                   * * *
   1 1 0.01 0.0 0.0 0.5 0.0
2 2 0.01 0.0 0.0 0.5 0.0
   END HYDR-PARM2
  HYDR-INIT

      4.0
      5.0
      6.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0
     1 0
2 0
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
*** User-Defined Variable Quantity Lines
                                         addr
* * *
                                       <--->
*** kwd varnam optyp opn vari s1 s2 s3 tp multiply lc ls ac as agfn ***
  <****> <----> <--> <-> <--> ***
  UVQUAN vol2 RCHRES 2 VOL 4
UVQUAN v2m2 GLOBAL WORKSP 1 3
UVQUAN vpo2 GLOBAL WORKSP 2 3
UVQUAN v2d2 GENER 2 K 1 3
*** User-Defined Target Variable Names
*** addr or
                                                                           addr or

        UVNAME
        v2m2
        1 WORKSP
        1
        1.0 QUAN

        UVNAME
        vpo2
        1 WORKSP
        2
        1.0 QUAN

        UVNAME
        v2d2
        1 K
        1
        1.0 QUAN

= 1523.
                                                              v2m2
*** Compute remaining available pore space
                                                                                     = v2m2
                                                               vpo2
                                                                         = vzmz
-= vol2
                                                               vpo2
*** Check to see if VPORA goes negative; if so set VPORA = 0.0
IF (vpo2 < 0.0) THEN
 GENER 2
                                                               vpo2
END IF
*** Infiltration volume
                                                                           = vpo2
                                                              v2d2
  GENER 2
END SPEC-ACTIONS
FTABLES
  FTABLE
    70 5
       Depth Area Volume Outflow1 Outflow2 Velocity Travel Time***
  Depth (acres) (acre-ft) (cfs) (cfs) (ft/sec) (Minutes)***

0.000000 0.016299 0.000000 0.000000 0.000000

0.087912 0.016299 0.000430 0.000000 0.000000

0.175824 0.016299 0.000860 0.000000 0.000058

0.263736 0.016299 0.001290 0.000000 0.000227

0.351648 0.016299 0.001719 0.000000 0.000569

0.439560 0.016299 0.002149 0.000000 0.000999
   0.615385 \quad 0.016299 \quad 0.003009 \quad 0.000000 \quad 0.001930
   0.703297 \quad 0.016299 \quad 0.003439 \quad 0.000000 \quad 0.003013
  1.054945 0.016299 0.005158 0.000000 0.008185
   1.142857 0.016299 0.005588 0.000000 0.008218
   1.230769 0.016299 0.006018 0.000000 0.008218
```

```
1.318681
            0.016299
                       0.006448
                                  0.000000
                                             0.008218
  1.406593
            0.016299
                       0.006878
                                  0.000000
                                             0.008218
  1.494505
            0.016299
                       0.007308
                                  0.00000
                                             0.008218
                       0.007738
  1.582418
            0.016299
                                  0.00000
                                             0.008218
  1.670330
            0.016299
                       0.008168
                                  0.00000
                                             0.008218
  1.758242
            0.016299
                       0.008597
                                  0.00000
                                             0.008218
            0.016299
                       0.009027
                                  0.000000
  1.846154
                                             0.008218
  1.934066
            0.016299
                       0.009457
                                  0.000000
                                             0.008218
  2.021978
            0.016299
                       0.010052
                                  0.00000
                                             0.008218
  2.109890
            0.016299
                       0.010647
                                  0.00000
                                             0.008218
  2.197802
            0.016299
                       0.011241
                                  0.000000
                                             0.008218
            0.016299
  2.285714
                       0.011836
                                  0.000000
                                             0.008218
  2.373626
            0.016299
                       0.012430
                                  0.00000
                                             0.008218
            0.016299
  2.461538
                       0.013025
                                  0.000000
                                             0.008218
  2.549451
             0.016299
                       0.013620
                                  0.00000
                                             0.008218
            0.016299
                       0.014214
                                  0.00000
  2.637363
                                             0.008218
  2.725275
            0.016299
                       0.014809
                                  0.000000
                                             0.008218
            0.016299
                       0.015404
                                  0.00000
                                             0.008218
  2.813187
  2.901099
            0.016299
                       0.015998
                                  0.00000
                                             0.008218
  2.989011
            0.016299
                       0.016593
                                  0.000000
                                             0.008218
  3.076923
            0.016299
                       0.017188
                                  0.000000
                                             0.008218
  3.164835
            0.016299
                       0.017782
                                  0.00000
                                             0.008218
                                             0.008218
  3.252747
            0.016299
                       0.018377
                                  0.00000
  3.340659
            0.016299
                       0.018972
                                  0.00000
                                             0.008218
            0.016299
  3.428571
                       0.019566
                                  0.000000
                                             0.008218
            0.016299
                                  0.000000
  3.516484
                       0.020161
                                             0.008218
                                  0.000000
  3.604396
            0.016299
                       0.020756
                                             0.008218
  3.692308
            0.016299
                                  0.00000
                       0.021350
                                             0.008218
  3.780220
            0.016299
                       0.021945
                                  0.000000
                                             0.008218
  3.868132
            0.016299
                       0.022540
                                  0.000000
                                             0.008218
            0.016299
                       0.023134
                                  0.00000
  3.956044
                                             0.008218
  4.043956
            0.016299
                       0.023729
                                  0.00000
                                             0.008218
  4.131868
            0.016299
                       0.024324
                                  0.00000
                                             0.008218
  4.219780
             0.016299
                       0.024918
                                  0.000000
                                             0.008218
            0.016299
                       0.025513
                                  0.000000
                                             0.008218
  4.307692
  4.395604
            0.016299
                       0.026108
                                  0.00000
                                             0.008218
  4.483516
            0.016299
                       0.026702
                                  0.000000
                                             0.008218
            0.016299
                       0.027297
  4.571429
                                  0.000000
                                             0.008218
  4.659341
            0.016299
                       0.027892
                                  0.00000
                                             0.008218
  4.747253
                                             0.008218
            0.016299
                       0.028486
                                  0.000000
            0.016299
  4.835165
                       0.029081
                                  0.000000
                                             0.008218
  4.923077
            0.016299
                       0.029676
                                  0.00000
                                             0.008218
  5.010989
            0.016299
                       0.030270
                                  0.00000
                                             0.008218
            0.016299
  5.098901
                       0.030865
                                  0.000000
                                             0.008218
            0.016299
                                  0.000000
  5.186813
                       0.031460
                                             0.008218
                                  0.000000
  5.274725
            0.016299
                       0.032054
                                             0.008218
            0.016299
  5.362637
                       0.032649
                                  0.000000
                                             0.008218
  5.450549
             0.016299
                       0.033244
                                  0.00000
                                             0.008218
  5.538462
            0.016299
                       0.033838
                                  0.00000
                                             0.008218
  5.626374
            0.016299
                       0.034433
                                  0.000000
                                             0.008218
  5.714286
            0.016299
                       0.035027
                                  0.00000
                                             0.008218
  5.802198
            0.016299
                       0.035622
                                  0.00000
                                             0.008218
  5.890110
            0.016299
                       0.036217
                                  0.000000
                                             0.008218
  5.978022
            0.016299
                       0.036811
                                  0.00000
                                             0.008218
  6.000000
            0.016299
                       0.077616
                                  0.00000
                                             0.008218
  END FTABLE
              2.
  FTABLE
   24
                                             Outflow2
     Depth
                         Volume
                                  Outflow1
                                                        outflow 3 Velocity
                                                                             Travel
                 Area
Time***
                                   (cfs)
                                               (cfs)
      (ft)
              (acres) (acre-ft)
                                                          (cfs)
                                                                   (ft/sec)
(Minutes) * * *
  0.000000 0.016299
                       0.000000
                                  0.000000
                                             0.000000
                                                        0.00000
                                  0.00000
                                                        0.00000
            0.016299
                       0.001433
                                             0.085788
  0.087912
                                  0.000000
  0.175824
            0.016299
                       0.002866
                                             0.089400
                                                        0.00000
  0.263736
            0.016299
                       0.004299
                                  0.00000
                                             0.093012
                                                        0.00000
  0.351648
            0.016299
                       0.005732
                                  0.000000
                                             0.096625
                                                        0.000000
            0.016299
                       0.007165
  0.439560
                                  0.000000
                                             0.100237
                                                        0.000000
  0.527473
            0.016299
                       0.008597
                                  0.00000
                                             0.103849
                                                        0.00000
            0.016299
                                  0.00000
                                             0.107461
  0.615385
                       0.010030
                                                        0.00000
```

```
1.054945 0.016299 0.017195 0.136453 0.125522 0.000000

      1.230769
      0.016299
      0.020061
      1.099144
      0.132746
      0.000000

      1.318681
      0.016299
      0.021494
      1.609623
      0.136358
      0.000000

      1.406593
      0.016299
      0.022927
      1.981777
      0.139970
      0.000000

      1.494505
      0.016299
      0.024359
      2.193018
      0.143582
      0.000000

      1.582418
      0.016299
      0.025792
      2.403681
      0.147194
      0.000000

      1.670330
      0.016299
      0.027225
      2.578717
      0.150806
      0.000000

   1.758242 0.016299 0.028658 2.742606 0.154419 0.000000
   1.846154 0.016299 0.030091 2.897238 0.158031 0.000000
    1.934066 0.016299 0.031524 3.044026 0.161643 0.000000
    2.000000 0.016299 0.032599 3.184053 0.164352 0.000000
   END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
                                                                         PERLND 1 999 EXTNL PETINP
                                                                    IMPLND 1 999 EXTNL PETINP
RCHRES 1 EXTNL PREC
RCHRES 1 EXTNL POTEV
RCHRES 2 EXTNL POTEV
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # " <Name> # #<-factor->strg <Name> # <Name> tem strg strg***

      RCHRES
      2 HYDR
      RO
      1 1
      1
      WDM
      1000
      FLOW
      ENGL
      REPL

      RCHRES
      2 HYDR
      O
      1 1
      1
      WDM
      1001
      FLOW
      ENGL
      REPL

      RCHRES
      2 HYDR
      O
      2 1
      1
      WDM
      1002
      FLOW
      ENGL
      REPL

      RCHRES
      2 HYDR
      STAGE
      1 1
      1
      WDM
      1003
      STAG
      ENGL
      REPL

      RCHRES
      1 HYDR
      STAGE
      1 1
      1
      WDM
      1004
      STAG
      ENGL
      REPL

      RCHRES
      1 HYDR
      O
      1 1
      1
      WDM
      1005
      FLOW
      ENGL
      REPL

      COPY
      1 OUTPUT
      MEAN
      1 1
      12.1
      WDM
      701
      FLOW
      ENGL
      REPL

      COPY
      501
      OUTPUT
      MEAN
      1 1
      12.1
      WDM
      801
      FLOW
      ENGL
      REPL

END EXT TARGETS
MASS-LINK
MASS-LINK
<Volume> <-Grp> <-Member-><--Mult-->
**Toman # #<-factor->
                                                                                                  <-Grp> <-Member->***
                                                                           <Target>
  Name> <Name> # #<-factor->
MASS-LINK 5
<Name>
                                                                            <Name>
                                                                                                                   <Name> # #***
IMPLND IWATER SURO
                                                 0.083333
                                                                           RCHRES
                                                                                                      INFLOW IVOL
  END MASS-LINK
                                5
   MASS-LINK
                                8
RCHRES OFLOW OVOL
                                            2
                                                                            RCHRES
                                                                                                     INFLOW IVOL
   END MASS-LINK 8
   MASS-LINK
                                15
IMPLND IWATER SURO
                                                   0.083333
                                                                           COPY
                                                                                                      INPUT MEAN
   END MASS-LINK 15
   MASS-LINK
RCHRES OFLOW OVOL
                                                                            COPY
                                                                                                   INPUT MEAN
                                17
   END MASS-LINK
```

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2018; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

ATTACHMENT 3

Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

Indicate which Items are Included behind this cover sheet:

Attachment Sequence	Contents	Checklist	
Attachment 3a	Structural BMP Maintenance Plan (Required)	□ Included	
		See Structural BMP Maintenance Information Checklist on the back of this Attachment cover sheet.	
Attachment 3b	Draft Stormwater Maintenance Notification / Agreement (when applicable)	☐ Included ☐ Not Applicable	

Template Date: August 28, 2017 LUEG:SW PDP SWQMP - Attachments Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Attachment 3a must identify:

	Specific maintenance indicators and actions for proposed structural BMP(s). This must
	be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual
	proposed components of the structural BMP(s)
□ H	How to access the structural BMP(s) to inspect and perform maintenance
	Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt
	posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
	Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
	Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
\Box F	Recommended equipment to perform maintenance
	When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

Attachment 3b: For all Structural BMPs, Attachment 3b must include a draft maintenance agreement in the County's standard format depending on the Category (PDP applicant to contact County staff to obtain the current maintenance agreement forms). Refer to Section 7.3 in the BMP Design Manual for a description of the different categories.

Template Date: August 28, 2017 LUEG:SW PDP SWQMP - Attachments

ATTACHMENT 4

County of San Diego PDP Structural BMP Verification for Permitted Land Development Projects

Template Date: August 28, 2017 LUEG:SW PDP SWQMP - Attachments Preparation Date: [INSERT DATE OF SWQMP]

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

46 of 42

This page was left intentionally blank.

Template Date: August 28, 2017 LUEG:SW **PDP SWQMP - Attachments**

479

County of San Diego PDP-IVF:

Installation Verification Form for Priority Development Projects (PDPs)

This form must be accepted by the County prior to the release of construction permits or granting of occupancy for applicable portions of a Priority Development Project (PDP). Applicants are responsible for providing all requested information. Do not leave any fields blank; indicate *N/A* for any requested item that is not applicable.

PART 1 General Project and Applicant Information

Table 1: Project and Applicant Information

A. Project Summary Information		ID No. IVF-20 To be assigned by DPW-WPP
Project Name	Click here to enter text.	
Record ID (e.g., grading/improvement plan number, building permit)	Click here to enter text.	
Project Address	Click here to enter text.	
Assessor's Parcel Number(s) APN(s))	Click here to enter text.	
Project Watershed (complete Hydrologic Unit, Area, and Subarea Name with	Click here to enter text.	
B. Owner Information		
Name	Click here to enter text.	
Address	Click here to enter text.	
Email Address	Click here to enter text.	
Phone Number	Click here to enter text.	

Last updated: April 16, 2018

LUEG:SW PDP SWQMP - Attachments

County of San Diego PDP-IVF:

Installation Verification Form for Priority Development Projects (PDPs)

Document previously verified BMPs for the PDP in **Table 2**. Include the Verification Form ID No. from **Page 1** if one was issued.

**** DO NOT INCLUDE THIS PAGE UNLESS THIS IS A PARTIAL RECORD PLAN VERIFICATION ****

Table 2: Information on Verifications for Partial Record Plans Only

A: Previous Submittals

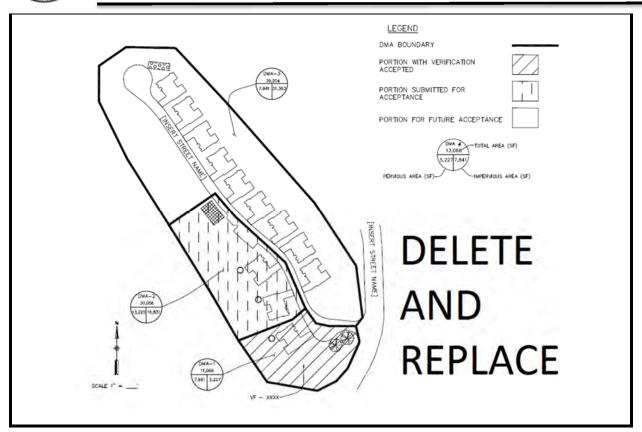
Previous Submittals	Submittal Date	Installation Verification Form ID No. if applicable (e.g., 2016-001)
1	Enter date.	Click here to enter text.
2	Enter date.	Click here to enter text.
3	Enter date.	Click here to enter text.
4	Enter date.	Click here to enter text.
5	Enter date.	Click here to enter text.

Add rows as needed

B: DMA and BMP Map

Please attach a map showing (1) all DMAs for the project site, (2) the DMAs and/or lots accepted under previous Verification Forms, and (3) the locations of Structural BMPs and Significant Site Design BMPs previously accepted OR listed in **Table 3** of this Verification Form.

SAMPLE DMA MAP


Last updated: April 16, 2018

LUEG:SW PDP SWQMP - Attachments

479

County of San Diego PDP-IVF:

Installation Verification Form for Priority Development Projects (PDPs)

Installation Verification Form for Priority Development Projects (PDPs)

PART 2 DMA and BMP Inventory Information

Use this table to document Structural BMPs (S-BMPs) and Significant Site Design BMPs (SSD-BMPs) for the PDP. All DMAs are required to have at least one Structural BMP or Significant Site Design BMP.

- In Part A, list all Structural BMPs (including both Pollutant Control and/or Hydromodification as applicable) by DMA.
- Complete **Part B** for all DMAs that contain only Significant Site Design BMPs. SSD-BMPs are Site Design BMPs credited in **Worksheet B-1.1** of the BMP Design Manual for Design Capture Volume (DCV) reductions. Only Tree Wells and Dispersion Areas should be included in this inventory.
- For any DMA that contains both S-BMPs and SD-BMPs, document only the S-BMPs; you do not need to include the SD-BMPs.
- The information provided for each BMP in the table must match that provided in the Stormwater Quality Management Plan (SWQMP), construction plans, maintenance agreements, and other relevant project documentation.

Table 3: Required Information for Structural BMPs and Significant Site Design BMPs

DMA#	BMP Information			Maintenance		Landscape	FOR DPW-WPP	
	Quantity	Description/Type of Structural BMP	BMP ID #(s)	Category	Agreement or Maintenance Notification Recorded Doc. #	Plan Sheet #	& Sheet # (For Vegetated BMPs Only)	USE ONLY Reviewer concurs that the BMP(s) may be accepted into inventory (date and initial)
Part A S	tructural B	MPs						
Add rows	Add rows as needed							
Part B Si	Part B Significant Site Design BMPs							

Last updated: April 16, 2018

Installation Verification Form for Priority Development Projects (PDPs)

Choose an item.				
Choose an item.				
Choose an item.				
Add rows as needed				

Last updated: April 16, 2018

Installation Verification Form for Priority Development Projects (PDPs)

PART 3 Required Attachments for All BMPs Listed in Table 3

For ALL	. projects	, submit the following to the County inspector (check all that are attached):
	Photogr	raphs: A photograph of each fully constructed S-BMP or SSD-BMP (or group of BMPs).
		nance Agreements: Copies of all approved and recorded Storm Water Maintenance Agree s) or Maintenance Notifications (MNs) for all S-BMPs.
	•	proposed for County ownership will remain the responsibility of the owner listed on Page of Acceptance of Completion is received by the DPW Watershed Protection Program.
For Gra	nding and	I Improvement projects only, ALSO submit:
		tpe Plans: An 11" X 17" copy of the most current applicable Landscape Plan sheets where required to be vegetated, including:
		The Certification of Completion (Form 407), AND The Certificate of Approval from PDS Landscape Architect
No	te: For ea	ach Landscape Plan, the sheets submitted must show the location of each verified as-built
	Constru sheets:	ection Plans: An 11" X 17" copy of the most current applicable approved Construction Plan
		Grading Plans, AND/OR Improvement Plans, AND/OR Precise Grading Plan(s) (only for residential subdivisions with tract homes), AND/OR Other (Please specify) Click here to enter text.

Last updated: April 16, 2018

Installation Verification Form for Priority Development Projects (PDPs)

Note: For each Construction Plan, the sheets submitted must incorporate all of the following:					
	A BMP Table, AND				
	A plan/cross-section of each verified as-built BMP, AND				
	The location of each verified as-built B	ВМР			
Required only f	for Verifications for Partial Record Plans	าร			
□ If this i	\square If this is a partial record plan verification, please include the following:				
	☐ A list of previously submitted Verification Forms (Table 2 , part A)				
	A map of DMAs and BMPs (Table 2, p.	part B)			
PART 4 Engin	eer of Work Certification				
By signing below, I certify that the BMP(s) listed in Table 3 of this Verification Form have been constructed and all are in substantial conformance with the approved plans and applicable regulations. I understand the County reserves the right to inspect the above BMPs to verify compliance with the approved plans and Watershed Protection Ordinance (WPO). Should it be determined that the BMPs were not constructed to plan or code, corrective actions may be necessary before permits can be closed.					
Please sign and	l provide your seal below.				
Professional En	gineer's Printed Name:	[SEAL]			
Professional Li	gilleer 3 Filliteu Name.				
Click her	e to enter text.				
Email: Click	nere to enter text.	-			
Phone Number	: Click here to enter text.				

Last updated: April 16, 2018

Installation Verification Form for Priority Development Projects (PDPs)

Profes	ssional Engineer's Signed Name:		
		_	
Date:	Click here to enter text.		

Last updated: April 16, 2018

Installation Verification Form for Priority Development Projects (PDPs)

COUNTY - OFFICIAL USE ONLY:

For County Inspectors	
County Department:	
Date verification received from EOW:	
By signing below, County Inspector concurs that e	very noted BMP has been installed per plan.
Inspector Name:	
Inspector's Signature:	Date:
For Building Division Only	
Inspection Supervisor Name:	
Inspector Supervisor's Signature:	Date:
PDCI & Building, along with the rest of this packag	ge, please provide to DPW WPP:
☐ A copy of the final accepted SWQMP and	I any accepted addendum
For Watershed Protection Program Only	
Date Received:	
WPP Submittal Reviewer:	
WPP Reviewer concurs that the BMPs accepted in	Part 2 above may be entered into inventory.
WPP Reviewer's Signature:	Date:

Last updated: April 16, 2018

The plans must identify:

ATTACHMENT 5

Copy of Plan Sheets Showing Permanent Storm Water BMPs, Source Control, and Site Design

This is the cover sheet for Attachment 5.

Use this checklist to ensure the required information has been included on the plans:

•
Structural BMP(s) with ID numbers matching Step 6 Summary of PDP Structural BMPs
The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
Details and specifications for construction of structural BMP(s)
Signage indicating the location and boundary of structural BMP(s) as required by County staff
How to access the structural BMP(s) to inspect and perform maintenance
Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of
reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
Recommended equipment to perform maintenance
When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
All BMPs must be fully dimensioned on the plans
When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number must be provided. Photocopies of general brochures are not acceptable.
Include all source control and site design measures described in Steps 4 and 5 of the SWQMP. Can be included as a separate exhibit as necessary.

Template Date: August 28, 2017 Preparation Date: [INSERT DATE OF SWQMP]
LUEG:SW PDP SWQMP - Attachments

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

40 of 44

This page was left intentionally blank.

ATTACHMENT 6

Copy of Project's Drainage Report

This is the cover sheet for Attachment 6.

If hardcopy or CD is not attached,	the following information	should be provided:
------------------------------------	---------------------------	---------------------

Title:

Prepared By:

Date:

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

42 of 44

This page was left intentionally blank.

ATTACHMENT 7

Copy of Project's Geotechnical and Groundwater Investigation Report

This is the cover sheet for Attachment 7.

If hardcopy or CD is not attached, the following information should be pro	vided:
--	--------

Title:

Prepared By:

Date:

PRIORITY DEVELOPMENT PROJECT (PDP) SWQMP

44 of 44

This page was left intentionally blank.